广西科学 Guangxi Sciences 1997, 4 (3): 18ト 182, 187

DyNiSn晶胞中的原子位置^{*} Atom Position of DyNiSn in Cell

农亮勤

Nong Liangqin

曾令氏 Zeng Lingmin

(广西民族学院物理系 南宁 530006) (Dept. of Physics Guangxi Institute for Nationalities, Nanning, 530006) (广西大学材料科学研究所 南宁 530004) (Institute of Mat. Sci., Guangxi Univ., Nanning, 530004)

摘要 在稀土化合物 DyNiSn的 X射线粉末衍射数据的基础上,用计算程序 LAZY PULV ERIX 确定了 Dy Ni Sn原子等效点位置。

关键词 DyNiSn 晶胞 原子等效点位置

Abstract Based on X⁻ ray powder diffraction data for the rare earth compound DyNiSn, the LAZY PULVERX program was used in determining the equivalent point positions of atoms Dy Ni Sn in cell.

Key words DyNiSn, cell, equivalent point positions of atoms. 中图法分类号 0562.2

迄今为止,对于 ReNiSn (Re为稀土)系列化合 物,除了 CeNiSn外,尚未出现在粉末衍射标准联合 委员会—— 国际衍射数据中心编辑出版的 PDF (Powder Diffraction File)中。文献 [1]研究了 CeNiSn 的 X射线粉末衍射,给出了它的衍射数据 (PDF38-897),指标化结果为正交晶系。随后文献 [2]报道 了他们用单晶法研究 CeNiSn的结果,指出该化合物 所属空间群为 Pn2a,每晶胞内含有 4个化合式量。 文献 [3]报道了 ReNiSn化合物呈现磁性和传输性 质的各向异性,很可能在高科技领域中有应用前景。 为此,我们相继开展了对 GdNiSn^[4]和 DyNiSn^[5]的 X 射线粉末衍射研究,并给出了它们的 X 射线粉末衍 射数据及一些晶体结构数据。对 DyNiSn,我们还没 有给出晶胞中原子位置的测定结果,本文将在文献 [5]给出的测定数据的基础上,给出该化合物晶胞中 原子位置的计算结果

1 实验方法

实验用合金的原材料为 99. % 的镝, 99. 9% 的 锡和 99. 99% 的镍。合金在高真空电弧炉中在高

广西科学 1997年8月 第4卷第3期

纯氩气保护下熔炼,使用水冷铜坩埚。为保证成 分均匀,反复翻熔 5次。熔好的合金块用钽片包裹, 置于真空度为 10⁻³ Pa的石英管中在温度 1050°C下 进行 10 d的均匀化退火,随后以 10^C/h的速率缓冷 至室温 经电子探针显微分析 (EPM A)证实合金试 样为 DyNiSa 在玛瑙研钵中把合金试样仔细研磨成 尺寸为 104 m的粉末,装入玻璃管中抽真空封好,于 400°C下保温 2d后以 10°C /h的速率降至室温 处理 好的合金粉末供 X射线衍射分析用。实验所用仪器 为日本 Rigaku D /max- RC型带石墨单色器转靶衍 射仪, 仪器设置为 Cu Kα 辐射 (λ= 1.54060Å), 管 压 50 kV, 管流 180 mA 发散狭缝为 1°, 接收狭缝 为 0.15 mm 收集衍射数据前,仪器灵敏度经过由美 国国家标准局提供的 NIST SRM 1976标样进行校 准 用 RigaKu公司提供的高纯 Si粉作外标, 作 $\Delta \mathcal{D}$ - $\mathcal{D}(\Delta \mathcal{D} = a_1 + a_2 \cos \theta + a_3 \sin 2\theta)$ 误差校正,以 确定 d数据

测量衍射强度时,采用国际衍射数据中心所建议 的 Rear Loading Sample装样技术,以减少制样过程 中可能引起的择优取向, 2⁹ 值在 1°~ 135[°]范围内对 样品进行阶梯扫描,步阶为 0.02[°],每步停留时间为 2 s 测量时的温度为 25± 1°C,衍射强度由峰形的积 分面积确定,数据处理都是用 D/max软件完成。

¹⁹⁹⁷⁻⁰⁴⁻⁰⁸收稿, 1997-06-16修回。

^{*} 国际衍射数据中心 (ICDD)和广西科委资助项目。

2 X射线粉末衍射数据

 $D_yN_iS_n$ 的 X射线粉末衍射数据见表 1 所有的 衍射线均能按正交晶系指标化,经最小二乘法精化后 得到的点阵参数为 a = 7.1018(1)Å, b = 7.6599表 1 DyNiSn的 X射线粉末衍射数据

Table 1 X-ray powder diffraction data of DyNiSn

$2\theta o(\circ)$	$do(\text{\AA})$	hkl	(I/I_0) o	$2\theta \ c(°)$	$(I \hspace{.05cm} / \hspace{-0.05cm} I_{0})$ c
17.048	5. 197	110	< 1	17. 012	0
23. 140	3. 841	011 020	4	23. 112	4
26. 383	3. 375	120 111	12	26. 419	14
32. 240	2. 774	201	5	32. 237	6
33. 344	2. 685	121	31	33. 328	37
34. 371	2.607	211 220	100	34. 349	100
37. 428	2. 401	130	10	37. 398	9
39. 831	2. 261	310	17	39. 825	16
40. 553	2. 223	002	29	40. 547	28
40. 730	2. 214	031	25	40. 717	31
43. 639	2.072	230	< 1	43. 627	2
48. 235	1. 885	202	4	48. 260	0
48. 414	1. 879	231	2	48. 408	2
49. 055	1. 856	122	3	49. 047	1
49. 657	1. 834	321	2	49. 662	1
51. 415	1. 776	400	4	51. 426	4
52. 694	1. 736	330	4	52. 685	4
52. 899	1. 729	410	2	52. 893	1
54. 208	1. 691	222	10	54. 208	11
54. 403	1. 685	240	2	54. 390	3
56. 334	1. 6318	132	2	56. 337	5
57. 129	1. 6110	411	5	57. 094	4
58. 133	1. 5856	312	7	58. 138	10
61. 097	1. 5155	232	3	61. 071	2
61. 921	1. 4973	150	5	61. 912	5
66. 133	1. 4118	341	17	66. 135	13
67. 490	1. 3867	402	2	67.456	3
67. 600	1. 3847	431	2	67. 576	2
68. 530	1. 3682	332	5	68. 527	4
69. 189	1. 3567	123	4	69. 190	4
69. 792	1. 3465	213	9	69. 796	8
70. 001	1. 3430	242	4	69. 993	3
72. 419	1. 3040	422	3	72. 393	2
74. 275	1. 2759	521	8	74. 287	8
76. 674	1. 2418	152	6	76. 662	5
79. 157	1. 2090	161	2	79. 146	2
79. 770	1. 2013	260	2	79. 761	2
81. 224	1. 1834	600	3	81. 203	1
87. 708	1. 1118	004	1	87. 738	2
88. 219	1. 1067	062	< 1	88. 181	0
89. 994	1. 0894	361	4	89. 996	2
90 598	1 0837	532	1	90 596	1

* 下标 o为观察值, 下标 c为计算值, I /I₀为衍射相对强度 Subscript o is observational value, subscript c is calculated value, I /I₀ is relative intensities of the diffraction. (2)Å, c= 4.4461(2)Å。指标化可靠性因子按 Smith 和 Snyder¹⁶¹提出的计算为 F³⁰ = 26.7(0.0178,63)

3 DyN iSn 晶胞中原子的等效点位置

考虑到高角度的 X射线衍射受温度漫散衍射等 因素的影响,计算原子的等效点位置时,仅取 $\mathcal{D} < 90^\circ$ 的数据 由表 1可见, DyNiSn的 X射线衍射消光规 律为: hkł 无条件; okl k + l = 2n; hoł h = 2n; ; hoơ h = 2n; okơ k = 2n; ool l = 2n; hkơ 无 条件。完全与 Pna2i的衍射消光规律相符,所以在计 算 DyNiSn的衍射强度值 *I*c时选用了 Pna2i 所用的 计算程序为 LAZY PULVERIX 计算出的 Dy Ni Sn等原子的等效点位置见表 2,衍射强度及 2 θ 的计 算值也一并列在表 1中。由可信度因数计算公式^[7].

$$R = \sum_{k} |I_{ok} - I_{dk}| \sum_{k} |I_{dk}|$$

算得 DyNiSn的 R = 14.6%。

根据文献 [8], 对结晶好, 化学式简单和择优取 向甚少的无机相, *R*值在 5% 与 15% 之间。可见分析 和计算结果还是比较好的。

表 2 DyN iSn 晶胞中原子的等效点位置

Table 2 Equivalent point positions of atoms in DyNiSn cell

原子	等效点				温度因子 B
Atom	Equiv al en t poi nt	Х	Y	Ζ	BTEM P (Å ²)
Dy	4(a)	0. 5080	0. 1951	0. 2665	0. 5
Ni	4(a)	- 0.2830	- 0. 3810	0. 2641	0. 5
Sn	4(a)	- 0. 1896	- 0. 0822	0. 2590	0.5

4 相邻原子间的距离和讨论

从表 2的原子等效点位置可算出晶胞中最近邻 的原子间距离: Dy-Ni为 3.01Å, Dy-Sn为 3.06 Å, Ni-Sn为 2.38Å。当配位数为 12时, Dy Ni Sn原子的半径分别为 1.77Å、1.24Å 和 1.58Å^[9]。 相应的两原子半径之和 rb+ rs rb+ rs rN+ rs分别 为 3.01Å, 3.35Å, 2.82Å,等于或比计算间距稍 大 但文献 [10]指出,随着配位数的减少,元素的 原子半径有规律性的变小, DyNiSn为正交晶系, 其 配位数显然比 12要小 因而从钢球模型来说, 其结 构是合理的。

5 结论

稀土化合物 DyNiSn属正交晶系,空间群为 Pna²,Dy Ni Sn原子的等效点位置均为 Pna²的

(下转第 187页 Continue on page 187)

Guangxi Sciences, Vol. 4 No. 3, August 1997

graphs of prime order as follows

 1) p = 137 and parameter set of graph G S= {1, 3, 4, 9, 11, 12, 14, 24, 26, 30,
 32, 33, 37, 39, 43, 49, 53, 59, 64, 66}.
 2) p = 149 and parameter set of graph G S= {1, 2, 4, 7, 10, 14, 16, 20, 27, 29,
 32, 41, 42, 44, 49, 60, 61, 65, 67, 70}.
 3) p = 157 and parameter set of graph G

 $S= \{1, 2, 5, 9, 17, 18, 20, 21, 25, 28, 32, 33, 36, 40, 42, 46, 56, 62, 66, 68, 72, 77\}.$

We have verified by computer the following facts The cyclic graph G_{137} (S) in 1) contains neither 4-point clique K⁴ nor subset K¹⁵ of 15 isolated points; the cyclic graph G_{149} (S) in 2) contains neither 4-point clique K⁴ nor subset \overline{K}_{16} of 16 isolated points; the cyclic graph G_{157} (S) in 3) contains neither 4-point K⁴ nor subset K¹⁷ of 17 isolated points. Therefore by Ramsey's Theorem we proved

Theorem 1 $R(4, 15) \ge 138, R(4, 16) \ge 150, R(4, 17) \ge 158.$

Note that our first example is better than the known result $R(4, 15) \ge 134$. The last two fill in

two blanks in the table of bounds of Ramsey numbers, and much better than the results in [5] $R(4, 16) \ge 120, R(4, 17) \ge 128$ and $R(4, 18) \ge 135$.

Acknowleg dment

We would like to express our sincere gratitude to Prof. S. P. Radziszowski for informing us the results in inference [5], Ph. D. thesis, through internet.

References

- Radzis zowski S P. Small Ramsey Numbers. The Electronic Journal of Combinatorics, 1994, DS 1.
- 2 Piwakowski K. Applying Tabu Search to Determine New Ramsey Graphs. The Electronic Journal of Combinatorics, 1996, 3 # R6.
- ³ Piwakowski K. Applying Algorithmic Techniques in Finding Lower and Upper Bounds for Ramsey Numbers (in Polish). Ph. D. Thesis, Technical University of Gdansk, 1996, ETI 5/96.
- Su Wenlong. The Estimation of Lower Bounds about Some Ramsey Number Rn(3) and Rn(4). Guangxi Sciences (China), 1996, 3 (3): 4~ 7.
- 5 Bannani F. Bounds on Classical Ramsey Numbers. Ph. D. thesis. Carleton University, Ottawa, November, 1988.

(责任编辑: 蒋汉明)

(上接第 182页 Continue from page 182)

4(a)位置,等效点坐标见表 2 DyNiSn的晶体结构 数据见表 3

表 3 DyNiSn的晶体结构数据

Table 3 Crystal structure data for DyNiSn

晶系 Crystal system	正交 Orthorhom bic
空间群 Space group	Pna2 ₁
点阵参数 Lattice parameter	$a=7.\ 1018(\ 1) {\rm \AA}$, $b=7.\ 6599(\ 2) {\rm \AA}$, $c=4.\ 4461(\ 2) {\rm \AA}$
单位晶胞中的化合式量 Number formula unit	z = 4
单胞体积 V olume of the unit cell	$v = 241.86 \text{ Å}^{-3}$
计算密度 Calculated density	$Dx = 9.334 \text{ g} / \text{cm}^3$

参考文献

1 Skolozdra R et al. Inorg. Mater. (Engl. Transl.), 1984,

20 520.

- 2 Higashi I et al. J. of Alloys and Compounds, 1993, 193 300~ 302.
- 3 Takabatake T et al. phys. Rev, 1990, B41: 9607.
- 4 Zeng L., Zhuang Y., et al, X- ray Powder Diffraction Study for Re Compound GdNiSn, TRANS. NFsoc, 1996, vol. 6, 1 51~ 53.
- 5 Nong L, Zeng L. and Hao J., X- ray Powder Diffraction Data for Compound DyNiSn, Powder Diff., 1997, 12 (3): 1~ 2.
- 6 Smith G S et al. J. Appl. Cryst, 1979, 12 60.
- 7 Snyder RL, Advances in X Ray Analysis, 1983, 26 1
 ~ 9.
- 8 McCarthy G J et al. Powder Diffraction, 1989, 4 156-159.
- 9 饭田修一等.物理学常用数表.北京:科学出版社,1979 56~57.
- 10 梁敬魁.相图与相结构— 多晶 X射线衍射和结构测定.北京:科学出版社, 1993 401~402.

(责任编辑:莫鼎新)