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Abstract　 Let G be a fini te g roup. Using the classification of the finite simple g roups w e obtain in-

formation on the st ructure of G under some assumptions on the leng ths of conjugacy classes of ele-

ments of G of prime pow er order.
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　　 In this noteG denotes alw ays a finite g roup. Let

Con ( G ) be the set of all the conjugacy classes of G

and let Con# ( G ) be the set of the co njugacy classes

of elements of G of prim e pow er order. For a fix ed

prime p the conjugacy class of a p -reg ular element is

called p -regular class, and w e put

　　 Con#
p ( G) = {C|C∈ Con# ( G) andC is a p -regu-

lar class}

　　 In reference [1 ], R. Baer characterized all fini te

g roups having the property: |C|is a prime pow er fo r

each C∈ Con
#

( G ) . D. Chillag and M. Herzog de-

scribed the structure of G under som e assum ption on

Con ( G )
[2 ]

. Y. Ninomiya classified fini te no nsolvable

g roups w ith exactly three p-regular clases
[ 3] . Our main

purpose in this note is to improv e the following w ell-

know n results in reference [2]:

( 1) Let p be a prime. p† |C| for each C ∈
Con(G) if and only if G has a Sylow p -subgroup in its

center.

( 2) If 4† |C|fo r each C∈ Con( G ) , then G is

solv able.

( 3) If|C|is a squarefree number for each C∈
Con ( G ) , then G is supersolvable and d I (G)≤ 3 ,

w here d I ( G) deno tes the derived length of G , and

both|G /F( G)| and|F (G)′| are squaref ree num-

bers.

The proofs of our theorem s require the following

theorem, which is a consequence of the classification of

the fini te sim ple g roups.

Theorem ( FKS) [4 ]　 Let G be a t ransitive permu-

tation g roup o n a setKw ith|K|> 1. Then there ex -

ists a primep and an elementx∈ G of order a power of

p such that x acts wi thout fixed point onK .

　　 Results and Proofs　 The hypothesis of every

theorem of this paper is inherited by normal subg roups

and quotient g roups by Lemma 1. 1 of reference [2 ] ,

so we can use induction f reely in our proofs.

Theorem 1　 Let p be a fix ed prime. Then p† |C|
for eachC∈ Co n

#
p (G) if and only if Ghas a Sylow p-

subgroup in its center.

Proof　 If G has a normal subg roupN such that 1

< N < G , then induction im plies that PN /N ≤
Z ( G /N ) , where P ∈ Sylp( G) , and that P ≤
Z ( PN ) . HenceP4 G and P are abelian. Thus the hy-

pothesis im plies that G= P× Op′(G) as required. W e

therefore may assum e that G is a nonabelian simple

g roup.

Let 1≠ x ∈ Z (P ) andClG( x ) = {xg|g∈ G} .

ThenG acts onClG (x ) by conjugation and Gi s a t ransi-

tive permutation g roup onClG (x ) . By FKS-theroem

there exists a prime r and element y ∈ G of order a

pow er of r such that

( xh ) y≠ x
h　 h∈ G.

On the o ther hand, p† |ClG ( x )|becausex ∈ Z (P ) ,

so r≠ p and hence p† |ClG ( y )|by hy pothesis. From

this w e hav eP≤ CG( y
g
) for someg∈ G , in particular
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y centrarizes xg
- 1

. This is a contradiction and the proof

is complete.

Theorem 2　 Let p be the smallest prime divisor of

|G|. If p
2† |C|for eachC∈ Con#

p ( G) , thenG is p-

nilpotent, in particular, G is solv able.

Proof　W e firstly show that G is not a nonabelian

simple group. Suppose that G is. Then by Feit-

Thom pson 's theorem o n the solvability of a group of

odd o rder, G has at least one central inv olution, say u,

and p = 2 . As in the proof of Theorem 1, there is a

prime r≠ p = 2 and an element x∈ G of order a pow er

of r such that (u
g
)
x
≠ u

g
for any g∈ G . On the other

hand, by hypothesis|G∶CG ( x )|2≤ 2 . Let S be a Sy-

low 2-subgroup of G such that u∈ Z ( S ) and let T be a

Sylow 2-subg roup ofCG( x ) . We hav eT
h
≤ S for some

h∈ G and obviously T
h≤ CG( xh ) . If u∈ T

h , then

u∈ CG( xh ) and so (uh
- 1

) x = u
h

- 1

. This is a contradic-

tion. If u T
h

, then|S∶ T
h
|= 2 . By a lem ma of

Thom pson
[5 ] , some conjugate of u , sayu

g , lies in T
h .

Then u
g
∈ CG ( x

h
) so that (u

gh- 1

)
x

= u
gh - 1

, again a

contradiction. The abov e argum ent shows that G can

not be any nonabelian sim ple g roup, and induction im-

plies tha t G i s solvable.

Let M be a maximal subgroup of G and M4 G .

Then G /M i s of orderq , whereq is a prime. If q= p,

inductio n implies that G is p- nilpo tent. We therefore

may assume that q≠ p . Ag ain applying induction w e

also may assum e tha t M = P∈ Sylp( G) . ThusG=

P < x > , whereP4 G and|x|= q≠ p . By hy pothe-

sis,

p
2
† |G∶CG ( x )|= |P∶CP (x )|

so

|G∶CG( x )|= 1 , or p

w hich im plies that CG (x ) 4 G and hence < x > 4 G .

In particular, G is p- nilpotent. This completes the

proof.

Corollary 3　 If 4† |C|for each C∈ Con
#
2 (G) ,

then G is 2-nilpotent.

Lemma 4　 Let p be a prime. If p
2
† |C|for each

C∈ Co n
#
p (G) and if G′is nilpotent , thenP /Op ( G) is

an elem entary abelian p -g roup, w hereP∈ Sylp( G) .

Proof　 By inductio n we may assume that Op ( G)

= 1 . HenceG′≤ F( G)≤ Op′(G) and G= POp′(G) ,

w here P∈ Sylp (G) . Again applying induction w e al-

so may assume that G= PF( G) . Put G- = G /H( G)

and H /H( G) = Op (G-) . Then H = QH(G) 4 G ,

w here Q∈ Sylp( H ) . We hav eG= N G( Q)H( G) =

NG (Q) . HenceQ≤ Op (G) = 1, namely Op ( G-) = 1

and p† |H( G)|. By inductio n we may assume that

H(G) = 1 . This im plies that F (G) = N 1×…× N r

is a di rect product of elementary abelian g roups N i .

Any x ∈ ∪
r

i= 1 N i is of order a prime and x is p- regu-

lar. Noting G= PF ( G) we hav e|P∶CP (x )|≤ p by

hypothesis. Thus

H( P )≤ ∩
x∈ F( G)

CP ( x ) = CP (F (G) ) = 1

w hich implies that P is an elementary abelian p-g roup.

This com pletes the proof.

Theorem 5　 If for any prim e p and any C ∈
Con

#
p ( G) p

2
† |C|, then G is supersolvable and

G /F (G) is a di rect product of elementary abelian

g roups.

Proof　 If G contains a norm al subg roup of prim e

order, then induction im plies that G i s supersolv able.

Thus we may assume tha t G co ntains no normal sub-

g roup of prime order. By Theorem 2, G is solv able. Let

N be a minimal no rmal subg roup of G . Then N is an

elementary abelian group of order p
n

for som e prime p

and an integer n≥ 2 . If N is not contained in som e

maximal subg roupM of G , thenG= MN i s a semi-di-

rect product. Then M  G /N is supersolvable and

henceM contains a no rmal subg roupQ of prim e order.

Set Q= < x > . AsQ is no t no rmal in G, M = N G (Q)

and therefo re CG( x ) ∩ N = 1 . Co nsequently

p
n||NCG (x )∶CG (x )|||G∶CG (x )|. On the o ther

hand, M = NG (Q) also implies that x is ap′-element ,

by hy pothesis p
2† |G∶CG (x )|. This is a co ntradic-

tion. Thus N is contained in every maximal subg roup

of G , so that the Frattini subg roupH(G) of G is non-

triv ial and by induction G /H(G) is supersolv able, and

henceG is supersolvable. Other conclusion of the theo-

rem follows f rom Lemma 4.

Corol lary 6　 If|C|i s a squarefree number for

eachC∈ Con
# ( G) , thenG i s supersolv able, dI (G)≤

3,G /F( G) is a direct-product of elem entary abelian

g roups and|F (G)′|is a squarefree number.

Proof　 By Theorem 5 w e need only show that

dI ( G)≤ 3 and|F ( G)′|is squarefree number. W e

have G′≤ F (G) . As F (G) satisfies the hypo thesis of

the theorem , by reference [2 ], |F( G)′|is squaref ree

number. HenceG = 1 , namely d I ( G)≤ 3 .
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