DOT: 10. 13656 /j . crki . gxkx. 1999. (2. 007

Guangxi Sciences 1999, 6 (2): 97~ 99

A Stage-structured Single Species Model with Diffusion
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A stage-structured single species model with diffusion is considered, where all the

parameters are constants. The system, which is composed of two patches, has one species which
is divided into immature and mature. And the mature can diffuse between the two patches while
the immature population is confined to one patch and cannot diffuse. We get the boundary of
the solution and the existence of the positive equilibrium of the model, and obtain the asymp-
totically stabilities of the positive equilibrium of the model and the positive equilibrium under
proper conditions. we prove that the unstability of the spot (0, 0, 0).
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The study about single species density depen—
dent models was early found in 1938 when V erthulst—
pearl established the following equation H
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Here, N (Z) is the density of the species in time & 7n
is the intrinsic rate of natural increase and K is the
carrying capacity of the system. It was proved in the
work that the positive equilibrium was unique and
global stable.

Though the model above approaches to the real
more close than the density independent model, its
faults are apparent. First, itis unfit to the species
which can diffuse among several patches second, the
life stage structure of the species is ignored in such a
model.

Later, in 1986, Freedman established the diffu—
sive single species model”, but the stage structure
was still ignored. Since for many species, itis well
known to all that the rate of death and the ability of
diffusion and predator is greatly different, thusitis
significant to study the stage—structured model In
recent years, such work appeared in reference
[3- 5], however, in their models, the species are
confined in one close environment and cannot dif-
fuse. The stage-structured single species model with
diffusion, which is more realistic than all of the

1998-07-08

*

* Supported by Foundation of Education Dept- of Guangxi-

oA 199F SH % 65% 2

stage-structured, diffusion, positive equilibrium, asymptotically stable
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above, still remains unstudied. Therefore it is signif-
icant to propose and consider such model in our pa-—
per. .

x1= bx>— gxi - dxi;

X2= gx1 - Dixa+ Ai(py2 = x2); (1)

y2= - Dzy%+ )\z(xz— y2).
Here, we classity the single species into immature
and mature. x1(#) is the density of the immature and
x2(t) is that of maturein patch 1, y2(¢) is the densi-
ty of the mature in patch 2. In our model, b is the
birth rate into immature and g is the grow th rate in—
to mature from immature. We assume the mature
can diffuse between patch 1and 2, andA1,A2 are the
diffusion coefficients. For theimmature, it is con—
fined in patch 1 and cannot diffuse. D1, D2 are the
density dependent coefficients of the mature and d is
that of the immature.

For the ecological meaning, we assume the sys—
tem satisfies

b> 0,g> 0,d> 0,Di> 0,D2> 0A1> 0,A2>

0 (Hi)
1 Main results

Lemma 1 Suppose ( Hi) holds true, thenR,; =
{(x1,x2,2) x1> 0,x2> 0,12> 0}isa positive in—
variant set of (1).

Proof The system (1) will be discussed by

the following three steps.
(1) X.l‘ v 0xs>0= bx2> 0.

(ii)x2|Xfo,xl>o,)»2>o: gxi+ Aiy2> 0
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(111) y2| v 0ye 0= Ax2> 0.

From (i), (ii) and (i), the assertion of the lem—
ma follows immediately for all#€ [0, + <o ]. That
completes the proof.

Theorem 1 Assume system (1) satisfies ( Hi)
and the conditionb — g > 0, then there exists a
compact region K C R such that for each solution
(x1(2),x2(t),y2(t)) with positive initial value xi (0)
> 0, »2(0)> 0,(i= 1,2) . There exists T> Osuch
that {x1(¢),x2(2),y2(¢)}€ K foralle= T

Proof Let

f(t) = max{xi (t)rxz(t)’yz(t) }s
o b-¢g g

M = max|{ d D }.

Obviously f(0) = max{x1(0),x2(0),y2(0)} .
By Lemma 1/ () > Oand there exist some£= 0Qand
a function k(z) in x1(¢) ,x2(¢) and y2(¢) such that
S(t) = k(t) for thet. Tt is easy to see thatf (?) is
continuous and right upper derivable. Now, we cac—
ulate and estimate the right upper derivative of f (¢)
as the following two cases

Case (i) /(0= M, hereMis positive con—
stant and satisfies M > M . We consider as fol-
lows.

(a) Whenf(t)= xi(¢)(= 0), it comes from
the first equation of system (1) that

D f (O - < BM - gM - dM* =

dM(b—_dg - M< dM(M - M) <0

(b) Whenf(t)= x2(¢) , it comes from the sec—
ond equation of system (1) that

D (1) s < gM - DiM = DlM(‘DgI - M)

< DIM(M - M) < 0.

(¢) Whenf (1) = y2(1) ,
of system (1) it comes that

D' f(t)‘f(z)=M< - DM <O

Let

T= - min{dM(M - M),MD\(M - M), -
D2M ).
Then 1> Oand by (a). (b), FOS M= f (1)
< M foralle= 0. Case (i) is completed

Case (ii) If f(0)> M, by the similar proof
to Case (1), we can have

D' f(l)‘f(t)>M <- T<o.
Then f(¢) will monotonously decrease by the speed

more than Tif £ (0)> M. Let 1= HO=M o0

from the last equation

we prove there must exist a positive constant T in
(0, T1]such that f(T)= M.

I, forallt€ [0,T1],f(¢£)> M holds, then we
have D f(t) <- T< 0t€ [0,7T1]).
tion of the inequation about ¢ on [0, T1] leads ta
f(T) = f£(0) <= T = M~ £(0), thenf(T) <
M . A contradiction to our assumption. This prove
that there exists a constant T which satisfies 0 < T

< Tiandf(T)= M. Therefore by Case (i) we ob-
98

An integra—

tain f(¢)<x M foralle= T. Case (ii) is compeleted.
Let
K =
(= M)
By Case (1) and (ii), for all the solution of (1) with
positive initial values, we have
(o), x2(1). 2 (N} € K= T)
That completes the proof.
The following Lemma is about the existence of

{{x1(2),x2(2) .y2() ) 0T xa (1), x2(2),

the positive equilibrium of system (1), itis

Lemma 2 There is at least one positive equi-
librium of system ( 1) whichis denoted as E= (x1 ,
x2,y2),(x1 > 0,x2 > 0,52 > 0).

Proof Let
bx> — gxi1 - dxi= 03
gxi — Dixi+ M(y2 - x2)= @ (2)

- D2y§+ Aa(x2 = y2) = O.
From the second and the third equations of system
(2) we get

D > D2
fX]Z EVEERSE VL (3)
While by the third equation we obtain
D )
X2= 3Tyt . (4)
Substitute ( 3), (4) into the first equationin (2) we

have

di s D Di D

D1 D
et T Guy T A oy 1)
2

D= b D=0 (5)

Clearly, theleft part of (5) is a seventh-order multi-
nomial where the coefficient of its first nomial is

positive. Let f(32) be the left part of the equation
(5), we obtain
f(0)==b<0,f(y2)>+ c© whenyr>+ .

Then there exists
FOi) = 0. By (3).
Denote E = (x1 ,x2
pleted.

Now, by making use of Lemma 2, it comes the

at least one y2 > 0 buch that
(4) we knowx1 > 0,x2 > 0.
y2 ), then the proof is com—

following theorem-
Theorem 2 Assume ( H') and
A+ A2> b

hold,

is asymptotically stable.

Proof By Lemma 2, the existence of positive
equilibrium of (1) is assured. From system (1) the
Jacobiap matrix on E is presented as follows.

(Fe)

then every positive equilibrium of system (1)

- g - 2dx1 b 0
J(E)= g ~ M- 2Dix2 A1
0 A2 - A2 - 2D2y*2
Then, the characteristic multinomial of J(E) is as
follows.
M- J(E) = A+ g+ 2dxi )[4 M+

2Dix> YA+ A2+ 2Dzy2 ) — Aik2] - gb(A+ A+
2D2y2 ).
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Let A= g+ 2hx1,B= A+ 2Dix2,C= A+
2D2y3 , thenA,B,C> Oand
INL= J(E)l = X+ (4+ B+ O\ = A'\’4 -

gbC+ [AB+ BC+ AC - (Ad2+ gb) P+ ABC
Noticing BC > Az, then it leads to

(A+ B+ C)[AB+ BC+ AC- A2+ gb) ]
(ABC - Ad2d — gbC)
2ABC+ Ai2A+ gbC - Mka(A+ B+ C)- gb(4
B+ C)+ A(B+ C)+ B’(A+ C)+ C(A4+ B)
24BC+ BC(BC - Ai\2)+ C(BC - Ad2)+ A (B
C)+ B’A+ AC' - gh(A+ B)
> ABC+ (ABC+ A’B+ A°C+ A'B) - gh(A+
B)+ AC'> (A+ B)[A(B+ C) - gb]> (A+
B)(g\i+ gho— gb)= g(A+ B)(Ai+ X2a— b)> 0.

+ 1 +

Therefore, by Routh—-Huruitz Theorem, the charac—
teristic roots of J (E) have negative real parts, then
there exists a constant ¢ > O such that all the real
parts of characteristic roots are smaller than- c.
Thus, from reference [6], Theorem 1, system (1)
is asymptotically stable on £. Such competes the
proof.

We can also get the following Theorent

Theorem 3 Assume ( H) holds, then the point
(0, 0, 0) is the unstable equilibrium of system (1).

Proof By system (1), the Jacobian matrix on
(09 Ov 0) iS

A2) — A2 | = bg(A+ A2)= M+ (g+ M+ A\
[g1+ A2) — gb - gbha.
SinceF(O)= - gb\z < O,F(+ OO)=+ SO, there
must exist a constantA” > Osuch that F(X" ) = 0.
Therefore from reference [6], (0, 0, 0) is the unsta—
ble equilibrium of the system. Thus completes the
proof.
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KdV
s T FEHZ v T
U »
KdV A= 2plsia= os= - W- Bh. (9
(11
U)= 1'{z), ! . (9
w+ T(Huu+ U)uw = 0, (1) Se = O,
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FY — 504U+ (44> — 2BA4)s,T— 245= 0 (5)
% U - 2 T - =
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Ft B, = 0. (3) tion, JMath Phys, 1990, 31, 2851~ 2855.
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