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constructed, which is shown to be isomorphic to the tree constructed by Almeida—Ramos.
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On the basis of the pure combinatorial procedure a tree of 0-1 sequences is

Also

selfsimiliarity and eigenvalues of elememts in such a tree are studied.
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1 Instruction

Almeida—Romos in reference [ 1] constructed a
tree of O-1 sequences, written Tur, by using a pure
combinatorial procedure and studied the norms of
matrices induced by elements of Tar. In this paper
we construct, in a similar way, a tree, written T, of
0-1 sequences which is different from T4z but shown
to be isomorphic it. Moreover, we study the self-
similarity in 7 and the distribution of eigenvalues of
elements of T. According to reference [2], the tree

T is closely related to the dynamics of Lorenz maps.

2 Another Tree in Symbolic Dynamics

Letz H {0, 1} ande.z »z be

defined by €(x1,x2,--) = ) for any (x1,

X2, )GE . TheZ , ©) (with the usual product
topology induced by the discrete topology of {0, 1})

(x2,x3,

is called to be the (one-sided) symbolic dynamical
system (see reference [3] for more details) -
Let x,y €

periods n andm

be two periodic sequences of

, respectively. Putx= (x1,x2,- ,xn,
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X1,X2, ) and Yy = (J/I,J/Z,"' s Yma Y1, V2,000,

Y, ). We identify x withy ifn = m and x1x2- x»

,)Cn,"'

= yiyz-- ym. with this identification, denote byz_
the related identification space,

and by xix2,--,
xn- 1N the

identification class of the periodic

sequence x of periodn inE : , where“/A” is a symbol
different from either 0 or 1.

Let 1 < &8 < 0, define an order <inz_ as
,y= yiyr e Gz_ with x
7 y, we say thatx < yifthere exists anindexi such

that
x]xzv...

follows forx = x1x2,--

,Xi- 1= piy2 -+ pi-tandxi < i,
A sequence X € E_ is said to be shift-maximal if,
for any =< A=< | xl = 1, max{%x, ¢ }< X
wherel| x| denote the length of x, x/ = x'ix2,.,0

= 1,1I'= 0and2'= 2\, Denote byE : the set of

shift-maxim al sequences inE : and b)z , the set of

shift-maximal sequences with length k for k= 1
Then we have

2 =Q\Zk

for the topology of total order iIE induced by the
total order <.

We figure the element ofE : as a tree, written

T in what follows, placing at the k -evel the



elements ofz ¢ in increasing order from left to

right, The Fig. 1 below illustrates what we mean.
0A

1 p (x)

A tree T satisfying d(T)
{dix): x€ M P}= [1,2]

Fig. 1
(d(x)yx€ T)=

Denote byz i the set of finite 0 - 1
sequences. Define two maps hand 1 as follows

U 2 U,

x= xixz-t> a= awazr-,

whereat = x1 and, for 2< z< |x|
a._{Xt, lfx:l— 0,

i, ifxi-1= 1,
and
> U -2 U,
y= yiyr- > b= bibr-

whereDi = yrand, for 2< J=< | y|
b=)Yis if the parity ofosmylyz
¥; » if the parity of 0's iny yy-

Clearly, both hand] are injective.

Lemma2 1 (i) Letx= x1x2,--
anda = h(X)Z/ arar-- . Then, forany K /< lal ,
the parity of O s in aia2-- @ is odd (even, resp.) if
and only if x; = O(x;= 1, resp.).

(i) Joh= hol= i® U .

Proof

forj=

Yi- 1is odd,
Vj- 11s even.

€> U

(i) By induction onj. Clearly it is true
1. Now suppose /== 2 and the conclusionis
true forj — 1 Without loss of generality, assume
the parity ofosmalaz @-1is odd andxj-1= 0. If
the parity 0'sinaia>- a;is odd, theng = 1and thus
xi=di= 0, (onversely, ifx;= 0, theng = x;=
1 and thus the parity of 0'singiar- a- 1is odd; if the
parity of 0'sinaar- @ is even, theng = Oand thus
Xj = a/— 1, conversely, ifxi= 1, thenag = x' j=
Oand thus the parity of 0's inaaz- -aj 1s even.

(ii) We prove only Jjoh= ¥ U2, thea proof
of that J0 h= i® ,US is similar and omitted.

fim

Let X = Xix2- GZ WU z_,a: aar- =

h(x).andy: iy = j(a). By the definitions of h

and ], we havey = a;= xi, and, for any 2 << | xl

10

a;- 1 is odd,

. . ro. .
a;, if the parity of O's inajar- @ is even,

where .
{Xi,iin—lz 0,

a@= xi,ifxi-1= 1.

Ifxi= A thenyi= a= /= xi. Now suppose xi7
/\. Thena# /\ and 7 /\. By (i), thus, one gets
yi = ai= Xxi. This completes the proof.

Let T4r be the tree of 0-1 sequences constructed
by Almeida—Ramos in reference [1]. In what follows
we identify cicz+ ¢\ with ciez+- @ for any cicr+ ¢
6 TAR.

Theorem 2. 2 T is isomorphic to T4r.

Proof For convenience, denote by h and J the
restrictions of h and J to T and Tuz, respectively. We
will prove that h T— Tur is an 1som0rphism and

yi= {a/i, if the parity of 0's inaiar-

complete the proof in following two steps.

Step 1 To prove that both h 7> Tur and }
Tar—> T are well defined.

We prove only that b > Tuz is well defined,
the proof of that } T4r> T is well defined is similar
and omitted. Clearly it suffices to prove that h(x)é
Tar foranyxe T, thatis, to provethat h(x))<
h(x) fordny 1< k< ‘X‘

Let x = Xxixz Xn- 1A and h(x = a =
arar- an- /N . Set  max { (x ),é{( ,)} =
Ve 1Y+ 2+ Y- 130, whereyn = Then we have

Ve 1 Yk 20 Yoo 1Y X
Assume
Vi 1V 20 Vi r= 1= X1X2* Xr- 1 and Ve r < Xr

for some <= << n — k. Then we do argument in
following four cases

Case 1 yw 1yw 2 Yo ro 1= Xk 1Xk 200 Xk oo 1
andxt = 0. Thenaw |— Xw1= y/k+1: xi= 1<
0= ai. This 1mphes a<a. , , ,

Case2 Y 1Ye2 Yor-1= X o1 X e 27X ke r= 1
andxt= 1. Thenaw 1= xw 1= y/k+ 1= xi= 1<0
= ai. Thisimplies 4 < a , , ,

Case 3 Vi 1Yk 22 yk+r 1= X ke 1 X ke 2" X ke r— 1
anka = 0 Thenaw 1 = Xk+ 1= ye1= x1= 0 For
any E r— 1, ifxwi-1= 0, thenx: 1= Pk i- 1
= x'wi-1= landthus we havear i= x o= Ve i =
Xi = ai; if Xkri-1= 1, thenxi-1= xk+z 1= Oand
thus wehaveain i = Xu i = Yesi = xi= a. Thatis ,
in this case, we have

aiaz:- - 1= e« 1Ak 2°° Akt r- 1.

Ifxe 1= 0, thenXr 1= i -1 = xwri= land
thus we haveaw r = X'k » = Ve r < Xr = ar. Note
that in this case the parity of Os in aa>-ai 1 is
even. Thus one gets ©a < a; ifxe r-1= 1, then a
similar argument implies “a < a.

Case 4 Y 1V 2 Yl = 1 = Xkt 1Xke 270 Xkt 1= 1
and x+ = 1 Obviously, we have, in this case,
s 1@ 2 Ge -1 = @1azr- - 1 and @ 7 ar. I Xis - 1
= 0, thenx- 1= Yoo 1= Xkl = 0 and thus we

have ai r = X 4, = Ver> X,= a. Note that in
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ai- 1 is odd. Thus

I, then a similar

this case the parity of 0's in a1z
one gets a < a; if xp o =
argument implies ¢a < a.
Step2 To provehis an order—preserving map
Letx = x1xz-- Xn andy = y1yz-* Ym be in T with
x <y, andleth(x)= awa a and N y) = bibz-- bn

wherexs = ym= an = bn = . Assume

XXz Xio 1= yiyr-yiandxi <y
for some 6< & min{n - 1,m — 1}. Then we have
avar-- ai-1= bibr- bi- 1dnd a7 bi.
If xi-1 = 0, then yi-1 = 0 and the parity of Os in
aiar--ai- 1is odd. Thus wehaveaz— x> )’:— b
and then D(x) < h(y); 1fx:—1 = 1, then a similar

argument implies D(x) < h(y). Hence the map b T
— Tur is order—preserving. For any x,y€ T, puta

= h(x) andb = J(y), then there exists an edge
betweenx and y in T if and only if there exists an
edge between @ and b in Tar. Therefore,
Lemma 2. 1 it follows that T is isomorphic to T4r

from

with respect to h This completes the proof.

Remark 2. 3 Denote byz 4z the setz
reference [1].

2.2 it follows that (J‘Z AR)O(HZ ) =
(H22 )yo(123 )= ik, .
3 Self-Similarity

In this section we study the selfsimilarity of
T. The ideal of using selfsimilarity is motivated by
reference [4].

Definition 3. 1
selfsimilarity map if

Clearly from the proof of Theorem

i) and

AmapS: T Tis said to be a

(i) S is monotone increasing;

(ii) S has the following intermediate value
property. Let TandUbein T with T < U, Then for
any '€ T satisfying S(T) < I' < S(U), there exists
a Ve Twith T <V <Ugych that S(V) = T.

Definition 3.2 Letx = xwo-xi &N € T

Define a map SX:Z 92 by, foranyy= yiyz- S

S ()= xixz+ Xn- 1y1;y2;r ,
where, for any l< l< Lyl -

yi - X 1X 2 .x n-1,
X1X2 Xn- 1,

The map Sx:z g E

is well defined by Lemma 3. 1 below. Denote by M

the set of shift-maximal sequences in reference [5].
Define two maps& and" as follows

ay)
: AR v]uv

ala2"'4" aar:: ,

lfyl = 0
lfyl = 1.

and

IEAE 20009 20 % TES 1B

4 M2
A Ax- %» A1A2 ,
where 0= R,R: O, 1= L,vL: I,A: CandC=
A\, Clearly, 80Z= idu, Z02= & . and both @ and Z

are order—preserving.

Lemma 3.1 Letx€ 7. Then, for any yE<

2
S ()= J(AA(hx))* a(hiy))))

where™® -product is defined on page 72 in reference
[3].

Proof Set

h(x)@ h(y)= Z(a(h(x))* a(h(y))).
Then it suffices to prove

Se(y) = I(hx)D hiy)).
Let h(x) = aiaz- a,- > and h(y) = bib>--, puta=
aiaz-- ar- 1. Itis not difficult to obtain that

h(y)@ hy) = abiabr- ,
where

bi = bi, if the parity ofosmals odd,

b, if the parlty of 0'sinais even.

Note that the parity of 0's inais odd (even, resp.)
if and only 1fxn 1= O(xa-1= 1, resp.),

h((bc Xz x e 1) = Oh(chz---xn- 1)
and

h(xixzxn-1) = 1h(xixz xa-1).

Then we have
h(si(y)) = Nx)© hy).
Slnce I= b, we have
S(y) = J(hx)@ hiy)).
This completes the proof.

Theorem 3. 2 Letx€ T. Then the map Si| T
T— Tis a selfsimilarity map.

Proof Clearly, the map S| I T—> T is well
defined. Let LUE Twith T< U andlet 'E T with
S (D) < T < 8 U). Then

RS (D)) < ahT)) < 4hs(Y))

By Lemma 3. 1 we have

RS (y))) = Abhx))* A(h(y)).
for y€ {LU}. Then from the properties of * -
product, see pages 72 to 78in reference [5] for more

details, there exists aW& M with 3 h(T)) <« W <

a(h(U)) such that
a(h(r‘))- A hox) )y W
Let V= Z(a(W))) ThenT < V< Uand
I= J(Z A(hx))* 4(hV))))
Thus by Lemma 3.1 one gets Sx( ) =
completes the proof.
Remark 3.3
understand the local structure of the tree 7. For
example, for any even integer = 4, the number of

L. This

Theorem 3.1 is useful to

elements in7 Jdevel between the smallest one and

0010%-- 01012 (= 0A® 011t 1) is equal to the

number of elements in 5 —level of T, this is easily

11



deduced from Theorem 2. 1 by takingx = 0.
4 Eigenvalues

In this section the eigenvalues of elements in T
are defined, which are shown to be closely related
to the spectral radiuses of the matrics induced by
elements of Tur (see reference [6] for more details).
Also the elements of T are divided into two classes,
the primary and the non—primary, which are shown
to be closely related to the kneading sequences of
tent maps.

LetX(1)= LXA)= 0and X 0)=

X = xixz- € Z

(polynomial in fact,

- 1, Forany

define the formal power series

whenever x 6 T)

| x
d((t) = 1+ ><(.)Cl t+ 2 ﬂ X(x/ X(x: N
where
X(Xi )=
{X(x,i), if the parity of Os in x1x2- xi-1is odd,

. M ! o 1
X(xi), if the parity of 0sinxix2- xi-11is even.

For any @ = aiaz-- € Z i » define the formal
pow er series (polynomial in fact, whenevera€ Tur
) | d
Ki(t)= 1+ 2 tH X(a).
Lemmad4 1 (i) Letxez andaez 4z with
h(x). Thend:(¢)= Kai(z).
(i)

d(eP 2, ifx€ T,
d (1), ifx€ )

where D(¢) is the related kneading determinant for
the casel =

D(t)=

21in reference [7].

(iii) Letx€ Tandy€ D, . Theds i (t) =
d(nyd@).
Proof (i) It suffices to show that, for any 2
< = \x\

H Xx)) X(x,H XNa) =
Now we do it in followmg two cases

i- 1 i- 1
Case 1 H Jj= 1XXJ'H j= .Xaf) = 1L We

. . . o,
know, in this case, that the parity of Os in

XXz Xi-1 1s odd (even, resp.) if and only if the
parity of 0's inara>- s a1 is odd (even,

that the parity of Os in aiax-

resp). Note
~ai-1 is odd (even,

resp. ) if and only if xi- 1= O(xi- 1= 1, resp. ). Then
we have

X(x,- ) =
X(x ,i), if the parity of 0'sinxixze xi1 is odd,
Xxi),if the parity of 0's in x1x2+ xi- 1is even,

12

et
Xxi)
X'

T Xax)
= a)

Thus the desired equality, in this case, is proved.

-1 -1

Case 2 || le(x/)]_[ s Na) = - L A
similar argument to case | can prove the desired
equality-

(ii) Leta = h(x) Then from Lemma 4. 5in
reference [7] itis not difficult to obtain that
K1) _ i is finite,

Ki(r),
Thus by (i) we have the desired equahty

(iii) Leth( )= a= aiazr- a,- (J’)*b_
bib2by+- . Then by the proof of Lemma 3 1 we have
hS(y))= dD b putl=€ (T),i= 12
1V € () andU= (- )V j= 1 \b\

, where N (a) is the parity of 0's ina. Clearly we
have
TL T U= Vi, forany K k<< |5l .
Note that S
d b= abiab:abs--

where ,
o {bi,ifN(Cl) is odd,

bi= if N(a) is even.
Then by (i) we have
d (1) = Kon(r)

-a-11s odd,
- ai-11s even,

,if the parity of Os in aaz-
1f the parity of Os in aiaz>-
) ifxi-1= 0,

,lf Xi- 1= 1,

D(t) =

if a is infinite.

= 1+ T+ o+ TH T4
T T Ufs 4+ - 4
(TG T ) UG ¢ e
n-1 i
= (1+Z.FT1T2+ o+ Ty (14
¥ R
S TR AL W)

KRt ) - d(r)cL(r*‘)
This completes the proof.

From (ii) of Lemma 4. 1 and Theorem 6.3 in
reference [6] it follows that there exists ans > 1
such that d(1/5)= Oand d(7)7 Oforany 0 <t <
1/sis & h(x) ) > R~ (see page 172in reference [5]
). Denote by d such ans and set & = 1if 8 h(x) <
R

Definition 4 1  For anx € >, , the
called to be the eigenvalue ofx.

d(x) is

Definition 4.2 Letx€ 2 . Thenx is called
to be non-primary if there exist y&€ T — {Son (D),

re Z) andzez A} such thatx = S (z),

where So. denotes the iterate of the map So. ,x is
called to be primary if it is not non—primary.
Denote by P the set of primary sequences in

2.
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For1< << 2, letf (x)= min{_ x, (1- x)}
for anyx& [0, 1]. Fach f_is so—called the tent map.
Like in reference [5], denote by K(f_ ) the kneading
sequence of f_.

Theorem 4. 2
2},

(i)P= [J(AK(f))r 1< <

(ii) Letx& P andx= j(Z(K(ff)))for some
1< < 2. Thed(x)= _

(iii) Lety€ E — P. Then there exists

uniquely anx< P such thatd(y) = d(x)

Proof (i) By Lemma 3.1 we know that an

elementx € Z is primary if and only if #(h(x)) is
primary in sense of reference [S]. Then by reference
[5] and the monotonicity of kneading sequences of
tent maps we have the desired conclusion.

(ii) Note that /- has the topological entropy
h(f-)= log forany 1 < <C 2 Then, by reference
[7] and (ii) of Lemma 4 1, we have A(f ) =
logd(x) = log and thus d(x) = _.

(iii) Since y& 2 — P, we that 3(h(y) ) is non-
primary in the sense of reference [5]. Then there
exist a finite primary sequence PS M- {RC} and a
Q€ M- ({C)} such that

Ah(y))= P Q ,
and such a P is unique. Putx = J4P)) andz =
J(Z(Q)). Then by Lemma 3. 1 we havey = S: (z).
Thus by (iii) of Lemma 4. 1 and Definition 4. 1 we
have d(y) = d(x)' This completes the proof.

For any K< A< 4. letg (x) = Ax(1- x) for
anyx € [0,1]. By TheoremIIl 1. 1 on page 173 in

reference [5] we havez = {J (Z(K (g))): K

4} and then, Foranyx& T, there exists aA& [1,
4] such that K(2) = 2(h(x)). Let 4v(x) be the
matrix induced by h(x) in reference [1]. Thenh (g )
= logd(4n(x)). On the other hand, by reference
[7] and (ii) of Lemma 4 1 we have h(g) =

logd(x). Thus, by (iii) of Theorem 4 2 and
Theorem of reference [1] we have

Proposition 4 3 d(7)= {(d(x): x€ T} =

{dx): x€ M P}= [1,2].
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