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Certain convergence conditions for conjugate gradient method with some types of inexact

line search are discussed. Convergence analysis of a class of methods is given as an example by ap-

plying our results.
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1 Introduction

We consider the unconstrained nonlinear opti—

mization problem:

minf (x). (1)

Where f: R R is continuously differentiable and
its gradient is denoted by g. gk and f* represent g (x«),
S (xx) respectively. A general conjugate gradient algo—
rithm is given by

X 1= Xkt Acdk. (2
) g, k= 1
dk_{— g+ Ud, k= 2 (3)

WhereU is a scalar andA« is a step length obtained
by a line search.

The wellknown formulae for U are Fletcher—
Reeves ( FR), PolakRibiere-Polyak ( PRP ),
Hestenes—Stiefel ( HS) and Conjugate-Descent ( CD)

formulae

. lgl?
W= e (4
T
RP_ gk!gk— gk—l)
Ut S (5)
T

us . gelee = gen
di-1(gi — gie1)’ (6)
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Il gell 2
W= - d—rgk— (7
k= 1Zk- 1

Zoutendijk[1| proved that the FR method with ex—
act line search was globally convergent. Al-Baali™! ex—
tended this result to strong Wolfe line search. Pow-—
ell” showed that the PRP method might not converge
to a stationary point, and he suggested that U should
not be less than zro, Gilbert and Nocedal™' proved
that U = maX(uDRP,O) could make the method con-
verged globally with the Wolfe line search and the suf-
ficient descent condition (gkrdlé - ClI gll *,C> 0)
holding. But Grippo and Lucidi”' showed that choos—
ing U might not be the only way. Chen and Jiao'®' pre—
sented a pew formula to com pute the scalar U :

U U,| gzdk- 1‘2 d andll gk”' I d i ll<< d

0, otherwise
(8)

Where

- U UM U (9)

0<Pi <Pa<ct+ oo, 0 (0, 1), & (0, 1/2)

In this method U < 0is permitted, and in Refer—
ence [6] the global convergence is proved with the
generalized Curry line search

(A) M = minfAl g (o + ldk)Tdk = _ngdk)\ >
0}, € (0,9.

We call this method New-M ethod.

As we all known, line search method plays an im—
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portant role in optimization algorithms. There are
many inexact line searches such as Wolfe line search
(B), strong Wolfe line search (B ), ideal line search
(E), Generalized Curry line search (A), etc.

above discussion we know that most of the results of

From

the convergence properties are based on the Wolfe or
strong Wolfe line searches. What s happen on the oth-
er inex act line searches is the main object of this pa—
per. In Section 3, we discuss the global convergence
(3) with

nine types of line searches. We will show in Section 3

properties of the general algorithms (1) ~

that Theorems 1 and 3 are very good tools for conver—
gence analysis. In Section 4, we analyze the conver—

of the New-Method mentioned

It is a good example for applying our results

gence properties
above.

In Section 5, we make a further discuss on the line
search (D).

2 Basic Assumptions and Definitions

We give the following basic assumptions

(AS1) The level set L1 = {x‘f(x)g S(x1)}is
bounded.

(AS2) In some neighborthood N of L1, the objec—
tive function f is continuously differentiable and its
gradient is Lipchitz continuous, 1. e. there exists a
constant L > Osuch that

lg(x)- g < Ll x = yll - Vx,ye N.

(10)

Line search ( A) and the following eght line

searches are considered in this paper.

fk+ X fk+ cl)\kngdk, (B1)

(B T
gh 1d= agl dr. (B2
fk+ o fk+ Cl)\kgkdk (B1')
\gk+ il << - czgkdk (B2)
1< [k, (CL
{ e 158 f(xk+ Aidr) + %, Y€ (0,1), (C2)
gk+ | dk = c2gk dr. (C3)
fi 1= f, (et
fro 1< f(xk+ txkd/c)+ X.Ye€ (01, (2
{ gk+ el < - g ! d. (3"
[ = [k, (D1)
{fle— K min{f (xk+ Adio)lX= 0)+ X, (D2)
g 1de= Qg ! dk. (D3)
fo = fr, (D1)
(D' f& =< min{f(xk+ Adk)A= 0}+ %, (D2
| gh 1did < - cagid. (D3")
(E)fi =< f(xk+ Xidk),

8

B 17\kngdk, (FI)

(F i =< fr+
fie = fr+ 72)\kgkrdk.

Where0 <ca < < 1,

= O,;lX <+ 00 ,0<

_1 <_2 < L X is the smallest positive stationary point
of the function h Q) = f (xi+ Adk).

The angle between — g and di is denoted by0k .
We denote

V. dd
-

gl = - &2,

cosek'

(11)

3 Main Results

Lemma 17 For any conjugate gradient method
with Formulae (1) ~ (3) if Zoutendijk condition

Vo
; = war < (12)
|| d/c”
holds and77— 1~ gl is bounded, then
k]}l\gl” gk|| = 0

Lemma 2 Suppose the assumption ( AS1) and
( AS2) hold, and consider any iteration with Formulae
(2)~ (3), whereds is a descent direction andA+ satis—
fies the Wolfe line search (B) or the ideal line search
(E) or the Goldstein line search ( F), then Zoutendijk
condition (12) holds

Proof With the line searches (B) or (E), we
can see Zoutendijk[l]; with the line search ( F) we can
see Xu'!

For the line searches (C) and ( D), we can obtain
similar results

Theorem 1 Suppose the conditions of Lemma 2
hold with the line searches (C) or (D), then Zou—
tendijk condition (12) holds.

Proof By assumption ( AS2) and Formula (C3)
(or (D3)) we obtain

(¢ - Dgld<< (go1- @) d< MLIl dill’

p— 1—lg—zdk—>\k> 0.

LIl 4dll

3.1 Under the line search (C)

By Formulae (C2) and (13) 3 4€ (xu,x +
Xdy),

[ =< f(x+ Ndi)+ X
= fr+ )\;ngdk+ Xi(g(%) - gk)Tdk+ X

(13)

1—
< [+ ?\kgkdk+ LI dll s X= fi - LCz\/:_I_
2
11—_LC?L\,2+ X= fi- ll—_LC?)L‘Z\;+ X,

fk+1<f1_ i—chZ VQ‘FZ

i= 1

From (AS1) (AS2), { f« } is bounded.
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DV <t oo,

e 1
3.2 Under the line search (D)

Since the proof is similar to (i), we omit it here

Remark 1 Since the line searches (B ) (C )
(D) are stronger than (B) (C) (D), hence Theorem
1 holds with the line searches (B) (C ) (D ).

Now we consider the line search ( A).

Theroem 2 If d« is a descent direction then the
line search (A) is stronger than (B ).

Proof (i) By (A) we have

YA€ [0Ax].g(xk+ )\kdk)rd/\< _ngdk.

ARE (OM), fu 1- fi= hglrit Nde) de<
_>\kgkrdk.

(i) By (A) again, | ge1dil = -
Cgt dh.

g d=< -

Now what we need to do is to letc = e,

0=
From the above lemmas and theorems, we have
the following theorem.
Theorem 3  Suppose the conditions of Lemma 2
to ( F) D

hold with one of the nine line searches ( A

)
Il dill _
and |~ I gl is bounded, then;}i:@” all = 0.

4 The Convergence Analysis of the New-
Method

Now we analyse the convergence property of the
New-Method we have mentioned in Section 1.

Theorem 4
(AS2) hold, let {xx} be generated by the New-

Suppose the assumptions ( ASI)

Method with the line searches (B ), (C ), (D), @
satisfies

6(32

— <1, (14)
thenk])lgln gl = 0

Proof (1) To prOVengdk < Oforall k.

Whenk= 1, gidi= - Il gl ’
by induction thatgkrdk < 0, then,

< 0. We suppose

gidi 1= = Il gl 2+ U 1 ge1dk
g _ || gk+ 1” 2 j('_ L3 l|| )|g]ﬂ, ldk‘
< - gl 7+ _eH gl ’

T
——[1——§ﬂllgkﬂllz<o

Hencedris descent direction and Formulae ( B,) , (C/) ,

(D/) can be satisfied.
I di Il

(i1) To proveH l is bounded.
JEAE 20005 28 % 8EE 14

lorU= 0, then” di| = 1

Ifk=
I gl

Ik 1,U# 0, then
Il dll * = P ﬂngdk-1+ Gl gl ?

I gkn
[ gkn , @
Ty 4
P 1de|»| Tl delt”
T d) 2
< gl 4 28I gl [Effdﬂ I gill
Il dill > , To [ fad ?
I gll 27 e ed) -
Remark 2 Form Theorem 2 we obtain that

Theorem 4 holds with the line search (A). Therefore
the result of Chen [6] can be deduced in our method.

5 Discussion

Now we make a further discussion on the line
search (D). We suppose the following assumption
(AS3) holds, then we show that Formulae (D1) and
(D2) are enough to ensure the Zoutendijk condition

(AS3) f€ C’(N) and there exists a constant M
> Osuch that

I Vi)l < MY x€ N,i,j= 1,2, .n

Where I vzf()C)” is some norm ofvzf such
that

V2 x) yll <
€ N,i,j= 1,2,

Lemma 3 @(?\)G C’[0,b],

1920l - Il Y x,y

(0) < O then any

zero point_ of 0’ (A),_€ [0,b], satisfies
= -0'(0) /0. (15)
Where|0"(0))[<< 0, VAE [0,b].
Theorem 5  Suppose the assumptions ( AS1),

( AS3) hold and consider any iteration with the formu—
lae (2) and (3), wheredkis a descent direction andAx
satisfies the following line search (DN)
o) fe = S, (D1")
DN f < minlf (s Ad) A= 0+ X, (D2)
then the Zoutendijk condition (13) holds.
Proof letO(A)= f(xi+ Ade) AE [0, ],
then
0’ (}\) = 4V f(Xk+ i )di< Ml dall’ VA
S [O,>\k 1,V k, and
0'(0)= gidi <O.
By Lemma 3, we obtain that the zero pointﬁc ofe/(K)

satisfies

= GLA - 07 0) /(M dill Py,

( 12 Continue on page 12)



El S <o, EHS -S> 0,( nrco ),
Y X> 0,
P st - 8 > N<H Sy~ SIS limsupkl ¢

sty <, (9
i:21{+l
P( max | S - Sl > X<E max | 8§ -
Flan<ot = len<d

\ 4
S | "< E max | > Yl E> v

Tlen<? oLy I
2k
< 2 Hyi'|M< 2", (10)
[

(9 (1) sS>S as
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9  Continue from page 9)
S3e (0,1),f(u+ Kdi) = fi+ Xigide+

T 2
KAl f (xi+ Kid)d< fi - %+

T 2
(gi di)
2 3 M S - Y

Fo =< f (et Nodi)+ X f(o Kide)+ X<

S = 2_]1‘4k+ X

S - g b 2 X

=1 =1
L»etk‘> S2 , we obtain

D0 Vo< oo,

k=1
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