La-Cu-Mn系钙钛矿型复合氧化物的表面特征 Surface Characterization of La-Cu-Mn Perovskite-type Mixed Oxides

兰翠玲 蒙衍强* 赵临远** 唐献兰*

Lan Cuiling Meng Yanqiang Zhao Linyuan Tang Xianlan

(右江民族师范专科学校化学系 百色 533000)

(Dept. of Chemistry, Youjiang Teachers College for Nationalities, Baise, Guangxi, 533000, China)

摘要 采用以 EDTA为配位剂的 Sol-gel法制备 La-Cu-Mn体系钙钛矿型复合氧化物,借助 X射线衍射 (XRD) X射线光电子能谱(XPS)等手段对其表面的结构和性质进行表征 结果表明,Cu³部分取代 A位、B位 或同时部分取代 A位、B位将导致氧化物表面特征发生变化;部分取代 A位的 La³⁺比部分取代 B位的 Mn³⁺更 有利于锰离子在表面富集,更能提高晶格氧的相对含量和阳离子缺陷的浓度,但对 Mn³⁺含量的影响程度没有明 显差异。

关键词 钙钛矿 复合氧化物 X射线衍射 (XRD) X射线光电子能谱 (XPS) 中图法分类号 0611.62

Abstract The La-Cu-Mn perovskite-type mixed oxides were prepared by the Sol-gel method using EDTA as complex agent, and characterized by X-ray diffraction(X RD) and X-ray photoelection spectroscopy(X PS). The X PS analysis reveals the characteristic changes resulting from the A-site substitutions, B-site substitutions or both substitutions of Cu in LaMnO₃. A-site substitutions for La³ is more beneficial to enhance the content of manganese ion on the surface, the relative value of lattice oxygen and the concentration of ion defect than B-site substitutions for Mn³⁺. But there is no marked difference in influence on Mn⁴.

Key words perovskite, complex oxide, X-ray diffraction (XRD), X-ray photoelection spectroscopy(XPS)

钙钛矿型复合氧化物 ABO3 作为一种通用的催 化剂材料得到了广泛应用,如汽车尾气净化等 ABO3 结构中 A位离子通常起稳定结构作用,当 A位离子 被其他异化合价离子部分取代时,可引起 B位离子 价态变化,使不常见的异常价态稳定,同时造成氧缺 陷。 B位离子的异常价态以及氧缺陷的形成,必然影 响化合物催化性能。梁珍成等¹¹研究了 LaMnO3中 A 位 Cu³ 掺杂效应,同时考察 La^{1-x} Cu^x MnO3 催化剂 对 CH₄ CO氧化反应的活性,发现 Lao.8 Cuo 2 M nO3

* 柳州两面针股份有限公司 柳州 545001 (Liuzhou Liangmianzhen Co., Ltd., Liuzhou, Guangxi, 545001, China).

* * 广西师范大学化学化工系 桂林 541004 (Dept. of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin, Guangxi, 541004, China). 效果最佳 但近年来的研究发现, ABO_3 中 B位过渡 金属元素掺杂,由于 B位元素间的协同效应,对催化 活性也产生明显影响 如 $LaCu^{0.4}Mu^{0.6}O_3$ 催化 CO完 全氧化活性比 Pt /CeO₂高 500倍^[2]。

至今对分别取代 A位或 B位的 ABO3型复合氧 化物报道甚多,但同时比较研究同一体系中分别作 A 位和 B位掺杂对氧化物结构、性质等的影响却鲜有 报道。本文运用 X射线衍射(XPD) X射线光电子能 谱(XPS)手段比较研究了 La^{2/3}Cu^{1/3}MnO3 La^{0.8}Cu^{0.6} Mn^{0.6}O3^[3] La^{0.8}Cu^{2.2}MnO3 和 La^{Cu0.4}Mn^{0.6}O3 等已 报道具有优异催化性能的 La-Cu-Mn体系钙钛矿型 复合氧化物的表面性质,试图找出 A位 B位被部分 取代对与催化性能有关的性质的影响关系。

1 实验部分

²⁰⁰²⁻⁰⁵⁻²¹收稿。

1.1 样品制备^[4]

先将 La Cu Mn的硝酸盐配制成一定浓度的溶液,根据铜的取代量按化学计量配成混合溶液,缓慢滴入到含乙二胺四乙酸乙二醇的氨性溶液中,并用 氨水控制溶液的 pH值为 5.0,搅拌,制得可溶性 ED-TA螯合物溶液,陈化 5h后,依次将溶液蒸发脱水获 得溶胶、凝胶,凝胶热分解、研磨后得到的粉末在空气 中于 650[°] 灼烧 1h,产品备用

1.2 XRD测试

丹东 Y-4Q型 X射线衍射仪,用 Cu Kα幅射,Ni 滤波,高压 40 kV,电流 20 m A,扫描速度 0.06°/s,取 样间隙 0.06°,在 20 为 10~ 80°范围内收集各样品的 衍射强度数据。

1.3 XPS测试

在美国 PHI-550多功能电子能谱仪上进行,以 $M_{gK\alpha}$ 为 X射线源,以污染碳的 1_s 结合能 (285.00 ± 0.50) eV 作为参比消除荷电效应

2 结果与分析

2.1 ABO³ 物相的确定

图 1结果表明, Lao. 8 Cuo. 2 M nO3 和 La Cuo. 4 M no 6 O3 形成了单一钙钛矿型相; La^{2/3} Cu^{1/3} M nO3 和 La⁰ 8 Cu⁰ 6 M n^{0.6} O3 保持有 ABO3 特征峰,但在 29 = 35. 6 处出现 CuO 特征峰,说明 Cu³ 的取代量有一定限 制,过多的取代量会出现 CuO杂相 这两个样品实际 上为 ABO3 相和 CuO杂相的混合体,这与文献 [1 的 报道是一致的。

2.2 表面物种的结合能和氧化态

表 1列出 4个样品经 XPS测定得到的 La Mn Cu元素的结合能 各个样品 La 3ds^{1/2}能级的 XPS谱如 图 2所示 由图 2可见,这些样品都有明显的双峰特 征,高结合能端 837.8 eV 左右的伴随是由于 La 3ds^{1/2} 内壳层的电子电离后,与镧配位的氧的价电子 (2p)转 移到镧的 4f空轨道上,从而导致产生 La 3ds^{1/2}振起伴 峰^[5]。这个峰位随 Cu² 取代位置或取代量的不同而 未产生可观察的影响,表明镧在化合物中是起稳定作 用的组分^[6]。

M n2p XPS谱如图 3所示。图 3表明, La Cua 4Mna 6 O3 的 M n2ps/2能级结合能明显高于其它样品。La M nO3 为富氧化合物, 锰的平均价态高于+ 3价,且存在 La³⁺ 缺陷^[7]。当 Cu³ 部分取代 B位的 M n³⁺ 离子后, M n⁴⁺ 离子含量将增加, 过剩氧含量将(或可能)下降。 Rojas 等^[8] 根据 H₂ 还原 的 结 果 发 现,La Cua M n- x O3 体系中在 0.4≤ ≤ 0.6范围内的样品, 锰通常以 M n⁴⁺ 离子形式存在, 这与 M n2ps/2结合

图 1 样品的 XRD谱图

Fig. 1 XRD powder patterns of samples

(a) La2/3 Cu1/3 M nO3; (b) Laa 8 Cu0. 2 M nO3; (c) Laa 8 Cua 6 M na 6 O3; (d) La Cu_{0.4} M n_{0.6}O3

表 1 样品的结合能

Table 1 XPS binding	energy va	lues of	i sampl	les
---------------------	-----------	---------	---------	-----

样品 Sam ple	La(eV)		M n(eV)			Cu(eV)
	3d _{5/2} (Co re)(3d5/2 Satellite)	$2p_{3/2}$	$2p_{1/2}$	\triangle E	$2p_{3/2}$
La2/3Cu1/3MnO3	834.30	837.79	642.16	653. 55	11. 39	933. 95
Lao. 8Cuo 2 M nO3	834. 25	837.84	642.13	653. 34	11. 21	933. 92
Lao 8 Cuo. 6 M no 6 O3	834.26	837.80	642.13	653. 43	11. 30	934.06
LaCu0 4M no.6 O3	834.34	837. 79	642.30	653. 48	11.18	933. 87

能偏高是一致的。此外,其它 3个 $Mn 2p_{3/2}$ 结合能相 近的样品的 $Mn 2p_{1/2}$ 结合能相比, $La_{0.8} Cu_{0.2} MnO_3$ 最 小,这与 Cu^2 取代量较少有关。 Cu^2 部分取代 $LaM_$ nO_3 中 A位的 La^3 ,由于 BO₆ 正八面体比较稳定,很 少产生 B离子缺陷,为了保持电中性,即有 La^3 缺陷 出现,体系中会有 Mn^4 产生,出现 $Mn^3 - Mn^4$ 共 存。根据文献 [9], $LaMnO_3$ 中掺入 Ca^2 、 Sr^{2*} 等二价 离子,体系中几乎按比例生成稳定的 Mn^4 离子。可见, Cu^2 取代量少时, Mn^4 含量也相应少。而 $Lan \circ Cun \circ$ $Mnn \circ O_3 尽管 Cu^{2*}$ 掺杂量较多,但由于 Cu^{2*} 部分处

(a) La2/3 Cu1/3 M nO3; (b) Lan 8 Cun 2 M nO3; (c) La0.8 Cun 6 M nn 6 O3; (d) La Cu0. 4 M n0 6 O3

于 A B位,真正有助于提高 M n⁴ 含量的 Cu³ 接近 于 Lao. s Cuo 2 M n O₃,所以 M n⁴ 离子含量并不显著增 多。可见, Cu³ 部分取代 LaM n O₃ 中 A 位 La³⁺ 或 B 位的 M n³⁺,对 M n⁴ 含量的影响程度没有显著差异, 主要由 Cu³⁺ 的相对含量决定。

样品中 Cu2p3/2能级 X PS谱如图 4所示。由此可见,在主峰 Cu2p高结合能一侧出现强振激伴峰。 Cu³和 Cu¹化合物 Cu2p的主峰位置相近。 Cu¹化合

Fig. 3 XPS spectra in Mn2p peaks of samples

(a) La^{2/3} Cu^{1/3} M n O³; (b) La^{0.8} Cu^{0.2} M n O³; (c) La^{0.8} Cu^{0.6} M n^{0.6} O³; (d) La Cu^{0.4} M n^{0.6} O³

物的 Cu2p峰不存在伴峰,只有二价化合物的 Cu2p 有伴峰^[10]。此外,这些样品 Cu2p³/结合能在 933.87 ~ 934.06 eV 范围内,接近 La² CuO4 中 Cu2p³2能级 的结合能(933.6eV)。可见这 4种样品表面,铜离子 主要以 Cu³形式存在。

2.3 表面组成

由表 3可知,这些样品表面均是 B位元素富集, 这对于催化性能主要由 B位过渡金属决定的钙钛矿

图 4 样品中 Cu2p32能级的 X PS谱

 $\label{eq:Fig.4} \begin{array}{ll} X\,P\,S\,\,spec\,tra\,\,in\,\,Cu2p_{3\,/2}\,\,region\,\,of\,\,samples\\ (a)\,\,La_{2\,8}\,\,Cu_{1/3}\,M\,\,nO_3;\,(b)\,\,La_{0.8}\,\,Cu_{0.2}\,M\,\,nO_3;\,(c)\,\,La_{0.8}\,\,Cu_{0.6}\,M\,\,na_{6}\,O_{3};\,(d)\,\,La\,\,Cu_{0.4}\,M\,\,n_{0.6}\,O_{3}\\ \end{array}$

型复合氧化物来说,有助于催化活性的提高。从 La^a 8 Cua 6M na 6O3 和 LaCua 4 M m. 6 O3 表面组成不难发现, 锰比铜更容易富集在表面,这是因为锰有较多的 3d 电子未饱和,处于相对不稳定状态而容易形成表面富 集。此外,锰含量按照 La^{2/3} Cu^{1/3} M nO3 到 La Cua 4 M ma 6O3 依次减少,La Cua 4 M m. 6 O3 甚至远低于体相 中锰含量相同的 Laa 8 Cua 6 M m. 6 O3,表明 A位 Cu³ 掺杂比 B位 Cu³ 掺杂更有利于 B位锰离子在表面形 成富集,与此相吻合,La^{2/3} Cu^{1/3} M nO3 由于 A 位 Cu² 掺杂量更多而导致其表面锰含量较 Lao. $s Cuo 2 MnO_3$ 高 除 Lao. $s Cuo 6 Mno. 6O_3$ 由于体相中 Cu^{2*} 含量大而 表面铜含量明显较大,其余样品的表面铜含量并不随 Cu^2 所处位置不同而产生明显差异。

表 3 Ols能级 XPS分峰数值及样品表面元素分布

 Table 3 O1s
 peak deconvoluted date and surface

 composition of samples

+* □		O1s(eV)			
作品	La: Cu: Min	晶格氧	吸附	す ₹	
Sample	in ou min	Lattice			
		oxygen	Absorbed	ox yg en	
La _{2 /3} Cu _{1 /3} M n O ₃	1: 0.66: 3.84	529.35	530.94	532.67	
Lao. 8 Cuo. 2 M n O3	1° 0.54° 3.22	529.15	530.76	532.18	
Lao. 8 Cuo. 6 M no. 6 O3	1: 0.94: 2.05	529. 20	530.94		
LaCu0. 4M no. 6 O3	1: 0.63: 1.30	529.36	531. 23	532.45	

* 530.0 eV < BE值 < 532.0 eV 的吸附氧为单原子氧种(O⁻), BE值 > 532.0 eV 的吸附氧为分子吸附氧种(O₂)

* Mono-atomic oxygen (O⁻): absorption oxygen with 530. 0 eV < BE < 532. 0 eV, Molecular absorption oxygen (O_2^-): absorption with BE> 532. 0 eV.

2.4 吸附氧种

图 5给出了所有样品 O1s能级 X PS谱,每一个 O1s峰都可大致分成 2个峰,低结合能的氧(529eV 左右)被认为是晶格氧 O^T,高结合能氧(531eV左 右)被认为是吸附氧。在表面氧中,低结合能的氧(晶 格氧)的含量几乎就与体相晶格氧的含量相同,可见, 除晶格氧外,表面还存在其它种类吸附氧种。在双峰 拟合时,肩峰的半峰宽与晶格氧的半峰宽差别很大, 这就意味着肩峰是由几种氧种组成,故进行多峰拟合 (图 5) 参阅文献 [11],假设 O1s由 3种氧种组成, BE值 < 530.0eV 的氧为晶格氧(O^T,记作 O), 530.0eV < BE值 < 532.00eV 的氧为单原子氧种 (O^T,记作 O), BE值> 532.0eV 的氧为单原子氧种

不同样品所测得的 O1s峰的峰形有明显差别, 表明表面晶格氧 吸附氧含量不同。根据 O1s峰拟合 结果可以计算出 Or、Or及 Orn的含量,进而求出 Otat /Oads, Oat / Mtot (Mtot 为表面金属原子总量), Ot / Orn比值,见表 4

从表 4可知,从 Laz/3 Cui β MnO3 到 Lao 8 Cuo 2 MnO3, Okt /Octs OI /OII和 Okt / Mto值都下降,表明 A 位的 Cu² 含量对氧物种的相对含量有显著影响,随 铜含量降低,阳离子缺陷也减少。 Cu² 部分取代 B位 的 Mn³ 后,把 La Cuo 4 MnO · O3 和体相中 Cu²⁺ 含量相 近的 Laz/3 Cui /3 MnO 3 相比,三项比值都较小,尤以 Okt /Octs和 OI /OII两项比值下降明显,表明 A位铜 部分取代能更有效地提高晶格氧的相对含量和阳离 子缺陷的浓度 而 Cu²⁺ 同时进入 LaMnO 3 中 A B位晶

Fig. 5 X PS spectra in O1s region of samples

(a) La_{2/3} Cu_{1/3} M nO₃; (b) La_{0.8} Cu_{0.2} M nO₃; (c) La_{0.8} Cu_{0.6} M n_{0.6} O₃; (d) La Cu_{0.4}M n_{0.6}O₃

表 4 样品的 XPS结果

Table 4 Results of samples by XPS

样品 Sample	Olat /O ads	OII / OIII	O lat /M tot
La2 /3 Cu1/3 M nO3	2.02	2. 98	1.77
La _{0.8} Cu _{0.2} M nO ₃	1.65	2.68	1.65
La _{0.8} Cu _{0.6} M n _{0.6} O ₃	0.91	_	1.30
LaCu _{0.4} M n _{0.6} O ₃	1.25	2.60	1.63

格时, Olat /Oads值较 Lat 8 Cub. 2 MnO3 和 LaCub. 4 Mno 6 O3都要低得多,表明表面氧空位数增多,分子氧吸附 消失。对于作为相应体系催化性能最佳的 La^{0 ®} Cu^{0 2} MnO3和 La Cuo 4 Mno 6 O3相比, OI /OII和 Oat / Mtor不 存在可观察的差异,而 Oat /Oads却差别很大,这必然 对催化性能带来较大影响。

3 结论

(1) La在 La-Cu-Mn系复合氧化物中是起稳定 作用的组份。

(2) Cu部分取代 La MnO3中 A位的 La³⁺ 或 B位 的 Mn³⁺,或同时进入 A 位 B 位晶格,对 Mn⁴ 含量 的影响程度未产生显著差异, M n⁴ 含量主要取决于 体相中 Cu^{2*} 的相对含量,铜在样品表面以 Cu^{2*} 形式 存在。

(3)4个样品均是 B位元素富集,且锰比铜更容 易形成富集 相对而言,A位铜掺杂比 B位铜掺杂更 有利于提高表面的锰离子含量:而表面铜含量并未随 Cu² 所处的位置不同而出现明显差异。

(4)表面氧物种的相对含量、氧空位数和阳离子缺陷浓 度,因 Cu² 取代位置 取代量不同而发生改变

参考文献

- 1 梁珍成,秦永宁,康巧丽等.La-Cu-Mn系钙钛矿型(ABO3) 催化剂性能.应用化学, 1997, 14(1): 11~ 14.
- Hiroywki Y, Yoshiki F. Oxidation of carbon monoxide on 2 LaMn1-xCuxO3 perovskite-type mixed oxides. J Chem Soc Faraday Trans, 1994, 90(8): 1183~ 1189.
- 3 维拉尼 F.著.稀土技术及应用.姚国欣,陈振树译.北京: 烃加工出版社, 1986, 23 ~ 233.
- 4 蒙衍强.硕士学位论文.桂林:广西师范大学,1999,6.
- 5 杨健美,苏 锵.LaGa_{1-x}FexO₃的结构与键性质.中国稀土 学报,1992,10(3):259~261.
- 6 唐少平,朱昂如,马健新等.LaM mx Cux O3 的清洁表面和 吸附表面的 XPS研究.催化学报,1984,5(4):341~345.
- 7 Wu Y, Yu T, Dou S B et al. A comparative study on perovskite-type mixed oxide catalysts $A'x A_{1-x} BO_{3\lambda}$ (A' = Ca, Sr; A= La; B= Mn, Fe, Co) for NH3 Oxidation. J Catal, 1989, 120 88~ 107.
- Rojas M L, Fierro J L G, Tejuca l G A et al. . Surface properties of LaM n_{1-x} Cux O₃ (x = 0-0.5) perovskite-type Mixed Oxides. J Catal, 1990, 124(1): 41.
- 王承宪,窦伯升,吴 越等.钙钛矿型催化剂 Cax Lau-* MnO_{3+λ}中的缺陷及其在氨氧化中的作用.中国科学 B辑, 1984, (3): 209~ 216.
- 10 林培炎,陈 勇,俞寿明等.La-Cu氧化物催化剂的催化 性质和表征.催化学报,1991,12(5):193~197.
- 11 杨向光,刘社田,叶兴凯等.复合氧化物 LaM n_{1-x} FexO₃(x = 0-1)的 X PS研究. 物理化学学报, 1995, 11(8): 681~ 687.

(责任编辑:邓大玉)