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Abstract The published researches on proteins in nacre and the control of nucleantion of calci—
um carbonate by the nacre proteins obtain lots achievements recently. There are many different
functional proteins found in nacre. The key proteins in function and structure are different in
the nacres from different animals. The control of nucleation, growth, morphology of calcium
carbonate in nacre by the proteins are obvious, but the biomimetic mineralization in vitro could
not reproduce inorganic phase morphology of nacre nowadays. The control mechanism of calci—
um carbonate by proteins in nacre is still not clear.
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Table 1 Basic features of purified proteins in nacre of different kinds of mollusk shells

Animal Protein Molecular Number of Basic feature Reference
weight residues of
(K Da) amino acids
2 CA , 1  GlyXaa-Asn (Xaa=
. . Asp Asn  Glu), CA .
;;Zzgda Nacrein 60 a4 Two CA domains with one Gly—Xaa-Asn domain be- (13]
tween them, and active.
Asnt  Gly, nacrein
Pinctada N66 66 568 Enriched in Asn and Gly amino acids- Residues with  [14]
maxima sequence are similar to nacrein.
Gly Tyr  Asn, 2 Asn~ Gly
s N 16
Pinctada N14 14 140 Enriched in Gly Tyr and Asn with two peculiar Asn— [14]
maxima Gly repeat domains, similar to sequence of protein
N I6.
C  ectin 6 Cys
lHaIZZOtif Perlucin 17 155 There is a functional C-type lectin d(:main with six of 15 16]
aevigala Cys residues, and carbohydrate-binding specificity.
Ser  Pro 13
Ser . .
Pinna nobilis ~ Mucoperlin  66.7 636 En}riched in Ser and Pro. Tht.are are 13 repeated do— [17]
mains containing Serin the primary structure, belong
to mucin-like protein.
Z?ZSOCZ;S Lustrin A 116 1428 Multifunctional framework protein with some func- [18]
tion as an extensor molecule and a protease inhibitor-
13 () —Ala 39 () Cly
. B- .
Pinctada MSI160 60 738 There are 13 poly—Ala and 39 poly—Gly domains, and (191
fucata . . ’
maybe exist as an antiparallel 3—sheet conformation.
Gly Tyr Asn  Cys, Asn~ Gly .
Pinctada N16 16 129~ 131 Enriched in Gly Tyr Asnand Cys. Thereare Asn— [20]
fucata Gly repeat domains.
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Table 2 Calcium carbonate polymorph controlled by proteins from mollusk shells in the saturated solution of calcium carbonate

Protein Result Reference

a)IM, IM, ; b) SM, , SM, , SM

CaCOs , IM ; ¢) SM.+ SM, .

Protein a) IMu or IM, only induces nucleation of calcite; b) SMainduces nucleation of aragonit w hile [21]
mixtures SM, induces nucleation of calcite, i. e nucleation of CaCO;3 polymorph could be controlled

by SM alone ¢) SM.+ SM, could induce aragonit crystal-

a) IM @ - + ) SM SM CaCOs

; by IM ,B- + SM, ( SM,)
i) SM, IM ( )

a) The combination of IM (B—chitin+ silk fibroin) and SM can induce nucleation of CaCO3 [24]

polymorph which is similar to that from SM; b)B <hitin+ SM, (or SM,) could induce nucle-

ation of calcite only in lack of silk fibroin; ¢) no crystal could be induced (except a few va—

terites) by IM when SM is absent.

a) IM4+ SM, ; b M, ,

;5 c) SMa > .

a) IM;+ SM, can induce nucleation of needle aragonite; b) nucleation of needle aragonite and [23]

block calcite could be induced when IM. presents alone; c) only nucleation of block calcite

could be induced when SM, presents alone.

a) SMa , i b) o I (0 IMy)

M, ( IM,) + SM, (SM,). SM, .

a) SMa couldinduce nucleation of afew aragonite, but produce large amount of calcite at the [22]

same time; b) IM, (or M,) IM, (or IM,) + SM, (SM,). SM, onlyinduce nucleation of

caldte.

SM,

No aragonite is induced by the protein purified from SM. when thereis no other inorganic (14, 16, 20]
Purified additives. ’ ’
protein
SM, ™M s p s n

Notes SM and IM represent water soluble and water insoluble proteins respectively; subscript p represents proteins extracted
from prismatic layers of shell, and subscript n represents proteins extracted from nacreous layers of shell.

3

Table 3 Aragonite morphology controlled by proteins from nacre in the saturated solution of calcium carbonate

Source of proteins Result Reference
N16 s , IM ,

Pinctada fucata ( MgClh )
The needle and spherulitic aragonite could be induced by N16 alone , but the highly orien—-  [20]

Haliotis rufescens

Atrina rigida

Pinctada maxima

Mytilus edulis

Pinctada fucata

tated elliptical or hexagonal tabular aragonite (when MgClk is added into solution) is in—
duced by both N16 and IM.

SMa > SMa+ SM, (10 m).
Needle aragonite could be induced by SM, alone , and tabular aragonite (10#m) induced by
SMi+ SM,

IM+ SM, (100~ 300+ m).
Elliptical aragonite (100~ 300 m) could be induced by IM+ SMa
N66+ N14 1M, ( MgCL )

Tabular aragonite could be induced by N66+ N14 IM, (when MgClL has been added into
solution)

SMa (30~ 60 nm)
Spheroidal aragonite could be induced by SM,, (30~ 60 nm)
IM+ SM, .

Needle aragonite could be induced by IM.+ SM.

[21]

[24]

[14]

[22]

[23]

SM, M

5 P N n

Notes SM and IM represent water soluble and water insoluble proteins respectively; subscript p represents proteins extracted
from prismatic layers of shell, and subscript n represents proteins extracted from nacreous layers of shell.
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