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A new BFGS-type formula and a new BFGS-lype method with weak Wolfe-Powell

(WWP) step size rule are presented. The numerical results are better than that by using the other

method mentioned in relevant references.
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1 Introduction

Consider the unconstrained optimization problem
min{f(x)l x€ R'}, (L1
where f(x) is continuously differentiable, whose
gradient atxx will be denoted by g, 1. e., 5 f(xx) =
gk. Quasi-Newton methods for solving (1. 1) often
need to update the iterate matrix Be. Traditionally,
{Br} satisfies the following Quasi-Newton equatior
(L2
whereyr= gu 1 — g andsk = xw 1 — xk. The very
fam ous update B is the BFGS formula
Besii Be  yepk
st Bisk S
It has been shown that BFGS is the most effective

B 1.8 = I,

Biw 1= Br - (L3

in Quasi-Newton methods. But the global convergence
for a general function f is still open even, if it is
convergent ( globally and superlinearly) for convex
minimization [ 1~ 7]. Our pioneers have made great
efforts to find out a Quasi-Newton method which is

not only possessing global convergence but also
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Broyden—Fletcher—Glodfard shanna, quasiNew ton

BFGS

superior than BFGS [8&~ 14]. In Reference [12], Wei,
Li and Qi proposed a new quasi-Newton equation as
follows. If we use the Taylor formula to the objective

function f(x) , we have
S(x) = fxw 1)+

—l(x — Xk 1)'5 (k1) (X = Xk 1)

5 (e 1) (x = xw1) 4

2
Hence

F )= )= 5 f e ) s 245 (e )
Therefore

s5 (e )s = 2[f(xx) - flxe1)] +
25 fom 1) s = 2[f(xk) = f(xw 1) [+ (g1 +
a6) T+ sy

The above equality gives us a new idea that, if we

set
g 2 = flw D) ly (geix g)'s,
[l
(L. 4)
and
yj} = w+ A,
which replaceyrin (1. 2),then we can get
B 18 = yA = yk+
253



20 (xk) = f(xe 1) ]+ (g 1+ gk)Tsz(Sk‘

e (15)

In Reference [12], Wei, Li and Qi replace all the
ye in (1. 3) and in the following modified BFGS
method

Bk+]= Bk—

BkSkSkTBk+ w (w )"
T T
Sk B sk S Yk

But we found that the numerical behavior is not

(16)

good enough. Now, we replace two ) in( 1. 3) only and
get another modified BFGS formula( M BFGS)

T T
B 1= Bi — kak&Bk_,_ (ke + AkSc)T(Vk+ Arsi)
Sk Brse S
(17
Brsist B 1“{
= B- Sl{BkSk + Skryk
yk(Aksk)T+ AkS;ykT+ A/cSk(AkSk)Tz BRGSs
& Yk
w(Ars )"+ Arsod + Arse (Aese)”
s yi : (18

Using (1. 8), (L 4) and the following weak
Wolfe—Powell (WW P) step-size rule
[ )<< f(xx)+ Wkgl du (L9
and
g 1di= gl dk, (1. 10
whereWe  (0,1/2) and €€ (W, 1), we proposed the
following algorithms.
Algorithm MBFGS
Step 0
symmetric positive definite matrix Bo=> 0. LetX> 0
and setk= 1

Choose an initial point X1 € R" and a

Step 1 Ifllge << X stop.

Sep 2 SolveBrdi+ gk = Oto obtain a search
direction dk .

Step 3 Find 'k by WWP.

Step 4 Setxw 1= xi+ kdi. Calculate updated

matrix Bk 1 by formula (1. 8).
Step 5 Setk= k+
If calculating the updated matrix by Formula (1.
6), we will get Algorithm W LQBFGS.

This paper is organized as follows.

1 and go to step 1.

The global
conv ergence properties of the M BFGS are represented
in the next section The preliminary numerical results
for the Algorithm MBFGS are given in section 3, and

the results would be compared with that by using
W LQBFGS method and the original BFGS method.

2 Global convergence analysis

In order to obtain the global convergence, we need

254

the following assumptions.
Assumption 2. 1  The level set
K= (xl f(x)= f(x0))

is contained in a bounded convex setD.

Assumption 2. 2 The function f is continuously
differentiable on D and there exists a constant L > 0
such that

llg(x) - g(»)I Lllx = yll, for allx,yE€ D.

Assumption 2. 3 The function f is uniformly
convex,i. e , there are positive constantsA1 andA2 such
that

Mz IP 2" Gx) =< AellzIP
for allx,z& R ,where G denotes the Hessian matrix
of f.

Since {f (xx)} is a decreasing sequence, it is clear
that the sequence {xx} generated by Algorithm
M BFGS is contained in K, and there exists a constant
f such that

T ()= /.

Moreover, from the fact that {xt} is bounded, by

(2. 1)

using Assumption 2 2, we can deduce that there exists
M= 0 such that for all k
llge < M. (2.2
To establish the global convergence of Algorithm
MBFGS, we give some useful lemmas.
Let {xt} be generated by Algorithm
MBFGS, then we have

Lemma 2. 1

millseP<< sl el moallsel?, (2.3)

MsIP< o < nollsll?, (2. 4)

2#(— gise) <+ o0 (2.5)
and 7

i K (2L+ A2)s. (2. 6)

Pﬁrnoof From (2 1) wehave
20 (fle) = S ) =m0 (f (%) -

flw))= Jim (f(x1) = flw)= f(x) - f .
Thus
20 () = f (e )=+ o,

which combines with
[l )< f () + Whglde,

yields

Z (- Tgld) <+ oo

k=1
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Therefore, (2 5) holds. From the definition of
yz , we have

Iyl = e+ (X[ () = fluw 1) ]+
(g(xe D)+ g(ex)) s M P Hyell+ [ 2[f () -
FOw )1+ (gl )+ glu)) sl Asl 2Alydl+
| Gxe+ 0(xe 1= xi))sl Msel 2LMsell+ Aallsell =
(2L + A2)s

Therefore, (2 6) holds.
expansion, we have

sye = s (Ot (2 [f(xx) = flow 1) [+ (ge
- g) ) MselPy = Sye+ 20f () = f(xn1) ]+
(g1 — @)= 2[f(xx) = f(xw1)]+ 22 s =

2[- gb s+ —ést(x/ﬁ 0 (k1 — xx))se |+ 29 1

Using ( 1. 4) and Taylor

= S G+ O(xw1 - xt))s.

Hence (2 4) holds by Assumption 2 3. (2 3)
can be got from (2 2) and Assumption 2 3, which is
omitted here.

The above lemma indicates that yx& > 0, which
combines with (1. 7) yields B+ 1> 0, so that{Br}isa
positive definite sequence.

Lemma 2. 2 Let {x«} be generated by Algorithm
MBFGS. Suppose that (2. 3) holds, then there must

be a positive constant M1 such that

Tr (Be 1)< Mi(k+ 1) (27
and
k 2
I|Bisi |
<
21 Jpy= Ma(k+ D). (28)
Proof From Lemma 2 1, by taking the trace
operation in both sides of (1. 8),we have
Tr(B — TWB || BiselI” ||yk ||2
r(Be 1) = r(Br) - JBs T ykSk <
1Besl®  (2L+ mo)’
Tr(Bx) - SkaBkSk mi S =< Tr(Bo) -
k 2 2
|Bis |l (2L + m2)
20 s'Bis © mi (k+ 1.
Using that Bw 1 is positive definite, we have

Tr (B 1) > 0. Therefore, the last inequality im plies
(2 7) and (2 8).

We can also see the similar proof of the above two
lemmas in Reference [14].

Lemma 2. 3 Let {xt} be generated by Algorithm
MBFGS and G is continuous at X

k]j£{1||Ak|| = 0

. Then wehave
(29
Proof By using Taylor § formula, we have
ws= (ge1— g) s= s G(%)s
FEAE 2003 11A F 10 5% 48

A C
I = TDet(Bk)> = D" 'Det(Bo) |

and
Flxi) = f(xm1)= — gos+ _éSkTG(aZk)Sk.
Where Ye= 01k (x0 1 — xx), Y%= O (X 1 — xx),
and01,02x€ (0, 1). From the definition of 4« and the
following equality

Fx)= fl 0+ ghilu= xe )+ = (-
Xie 1) B 1 (X6 — Xk 1),
we get
T T
S Be1s — s G( %)%
A= s P !
and

St Bi 1= 8" G( %) 8.

Hence
AN 1G(%) = G(3)ll.
Therefore, (2. 9) holds.

Lemma 2. 4 Let {x«} be generated by Algorithm
M BFGS; then there must be a positive constantct such

that
k
11 &= &. (2. 10)
)
Proof Using s« = — LBk 'gi and (1 10), we
have

(1- e)gcTBkgc: - (1- e)’]l:skrgk< ’Eyfryk:
1
IsZJOG(xH fo) df)se.

Therefore,

St Bise
> _ €
= (1 ) *Gs’

Combining with (2 4) and Assumpton 2.3, we

obtain
T *
Sk vk~ 1
S B ’];C’

- 1
eC: >ﬂ%and(}ZJOG(Xk+ f%)df

From Lemma 2. 1,by taking the determinant in
both sides of (1. 8),wehave

Det (Bi 1)= Det(Bx )%SA Ly%)f> Det (Bx)

wher

k

-

i= 0

Ll
whereD = j Using the follow ing inequali ty

Det (Bw 1)< [;1 Tr(Bw 1) T
and (2 7), we obtain that

k
_ D* 'Det(Bo)
HFO’L‘ = Det(Bw 1)

D" 'Det(Bo)
T}"!Bk+ 1! -
I I
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D" 'Det(Bo)
Mi(k+ 1) 7
|
Therefore (2 10) holds for all large k.

The following theorem is taken from Theorem

5.1 of Reference[14].

Theorem 2.1 Let {xt} be generated by
Algorithm MBFGS. Then, we have

lim infllgdl = 0 (2. 11)

Proof  Suppose that the conclusion does not

hold, then there exists a constant 2 Osuch that for all
k,
llgdl= X

Hence

veos 2 (- gle)= 2 (T =
k= 0
Z ( BkSi\Hgk|)_2 (FllgilP skBkskz)>
k= 0
.57€BkSc

1 Bescl Brs. |
}Q kgl

Therefore, for any Y> O there exists constants ko

such that for any positive integer g,

k+q k+q
st Bis .S7ch.S7c
<
H“ R RE ;Mﬁ Besl?= *

where the left hand side of the inequality follows from
the geometric mequahty Thus

il Bl
(H Iq< H BkSk )q

0
= kg 1 9 =g S’fB’fSk

|| Brse I
K s I

qd =0 Sk Brsk

N

k¥ q

YE 1 Bese Il ||

G kg 1 SABASA
Xko;qzq_li o

Let g7 © yield a contraction, because Lemma
2.4 ensures that the left hand side of the above
inequality is greater than a positive constant, we get

(2 11).
3 Numerical resul ts

The numerical results for Algorithm M BFGS will
be reported and compared with that for the original
BFGS method in this section. The 34 problems that we
tested come from the website ftp //ftp. mathworks.
com /. The code was written in MATLAB 6. 1 and in
double predasion arithmetic. All runs were performed
on PC(CPU PentiumlV 1. 7G). For each problem, the
termination condition is
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For each problem, we choose the initial matrix Bo
= [, i. e, the unit matrix. We will test the following
quasi-N ew ton methods.

BFGS Methods The BFGS method with the
weak Wolfe—Pow I WW P) step-size rule andW= 0. 1,
€= 0.9

MBFGS Methods The Algorithm MBFGS
method with the WWP,andW= 0.1,€= 0.09.

WLQBFGS Methods The Algorithm
W LQM BFGS method with the WW P, andW= 0. 1, ¢
= 009.

In order to rank the iterative numerical methods,
one can compute the total number of function and
gradient evaluation by the formula

Noa= NF+ m* NG, (3. 1)
where NF, N Gdenote the number of times of function
evaluations and gradient evaluation respectively, and m
is an integer. According to the results of automatic
differentiation’” ', the value of m can be set tom = 5.
It means that one gradient evaluation is equivalent tom
evaluation in  automatic

times of function

differentation.

Table 1 shows the results of BFGS and MBFGS
method, where the columns have the following
mearnngs

Problem, the name of the test problem in
M ATLAB; Dim, the dimension of the problem; NI:
the number of iterations NF', the number of function
evaluations N G, the number of gradient evaluations.

W e compare BFGS and M BFGS in the following
way. For each testing example i, compute the total
times of function evaluations and gradient evaluations
according to the evaluated methods ( MBFGS) and
BFGS respectively, and denote them by Nl
(MBFGS) and Nwuli (BFGS); then calculate the ratio

Nuwwari( MBFGS
Ntota],[( BF GS) ’

If EM(jo) does not work for example b, we

ril MBFGS) = (3.2
replace the Nuwaro (MBFGS) by a positive constant f
which define as follows

f= max{Nwu.i (MBFGS):

where

(i.))E S}

Si= {(i,/): method/ does not work for example
i,
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The geometric mean of these ratios for method
EM(j) over all test problems is defined by

HEM(j)) = (] rn(MBFGS))"S (3.3)
£S

Table 1 Test results for BFGS, MBFGS and
WLQBFGS methods
No. Pwoblems Dim BEGS MBFGS WLOBFGS
NIINFING NI/NFING NIINFING
1 ROSE 2 34 /54 135 30/49/31 29/51/30
2 FROTH 2 10 /22 /11 8/20/9 10/22/11
3 BADSCP 2 158/233/159  146/212/149  166/244/167
4 BADSCB 2 12 /56 /13 12 /54713 12/55/13
5 BEALE 2 1524 /116 12/21/13 15/25/16
6 JENSAM 2 11/24 /13 11/24/13 14/26/15
7 HELIX 3 28 /56 /30 25/52/27 28/55/29
8 BARD 3 23 /34 124 21/32/22 21/34/23
9 GAUSS 3 41715 41715 4/715
10 MEYER - - -
11 GULF 3 1/412 1/4/2 1/4/2
12 BOX 3 30 /41 /32 23 /36/24 21/39/24
13 SING 4 29 /52 /30 38 /63/40 23/46/24
14 WwWOOD 4 52 /97 /53 51/91/52 53/93/54
15 KOWOSB 4  28/32/29 28 /33/29 28/32/29
16 BD 4 23 /82 24 19 /76/20 -
17 0SBl 5 - - _
18 BIGGS 6 36 /47 139 30/38/32 35/46/36
19 0OSB2 11 53 /80 /54 53 /78754 56/82/57
20 WATSON 20  55/91/56 57 /93/58 56/93/58
21 ROSEX 8  86/152/87 74/133/75 80/140/81
50 256/652/257 233/607/234  232/600/233
22 SINX 4 29 /52 /30 38 /63/40 23/46/24
23 PpENLl 2 179/262/182 166/233/169  178/256/185
24 PEN2 8 531/768/539  691/918/696 -
50 293 /845/298  332/907/339  331/902/336
25 VARDIM 2 6/14 /7 5/13/6 5/13/6
50 27169 /31 37 /83/39 30/74/33
100 36/83/39 73/133/74  516/8406/524
26 TRIG 3 15 /23 /19 13/18/15 13/18/16
50 44 /48 /45 42 /43/43 42/43/43
100  48/51/49 48 /49/49 49/52/50
28 BV 3 6/14 /7 6/14/7 6/14/7
10 18/39/19 18/39/19 18/39/19
29 IE 3 7/11/8 7/11/8 7/11/8
50 12/15/13 11/15/12 12/15/13
100 12/15/13 11/15/12 12/15/13
200 12/15/13 11/15/12 12/15/13
30  TRID 3 12 /31 /114 11/27/12 12/29/13
50 63 /340 /64 65/334/66 67/335/68
100 112/637/113  109/633/110  112/644/113

200 216/1223 /217 195/1153/196 195/1155/196

31  BAND 2 11/21/12 8/20/9 10/28/11
32 LIN 2 173172 1/3/2 1/372
50 17372 1/3/2 1/3/2
500 17372 1/3/2 1/3/2
1000 17372 1/3/2 1/3/2
33 LIN1 2 2/10/3 2/10/3 2/10/3
10 3/22 /4 3/22/4 3/22/4
34 LIN2 4 2/111/3 2/11/3 2/11/3

dominated by a few problems for which the method
requites a great deal of function evaluations and
gradient functionss We can also compare methods
WLQBFGS and BFGS by using the same rule.

From Table 2, we found that the average
performance of the MBFGS method is a little better

than the other two methods.

where S denotes the set of the test problems and| S|
the number of elements in S. One advantage of the

above rule is that the comparison is relative and not be
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Table 2 Rel ative efficiency of BFGS, MBFGS and
WLQBFGS algorithms
BFGS MBFGS W LQBFGS
1 0 9783 1. 0413
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