广西科学 Guangxi Sciences 2003,10(4): 262~ 263,268

b夸克质量的动力学参数味修正^{*} t The Flavor Dynamic Parameter Modification of the Mass of t, b Quarks

周勋秀 畨 庆 焦善庆 Zhou Xunxiu Huang Qing Jiao Shanqing

(西南交通大学理学院 四川成都 610031) (Science College of Southwest Jiaotong University, Chengdu, Sichuan, 610031, China)

摘要 假定重夸克碎裂函数 β-分布的动力学参数味修正与重夸克质量效应等价,结合碎裂函数的峰值随重夸克 质量的增大而向大 z方向偏移的实验数据,计算出重夸克 t b的质量,理论计算结果与实验数据符合较好, 关键词 重夸克 夸克质量 碎裂函数 动力学参数

中图法分类号 0572.23

Abstract The flavor dynamic parameter modification of heavy quarks fragmentation function (β distribution function) has been assumed to be equal to its mass effect. The experimental dato show that the peak of fragmentation function shifts to ligger z value with the mass of quark. The mass of heavy quarks t and b have been calculated according to the two facts mentioned above. The calculation result was in good accordance with the experimental data-

Key words heavy quark, mass of quarks, fragmentation function, flavor dynamic parameter

三代夸克之间存在很大的质量差,第三代夸克 t b 间也存在很大的质量分裂.当前,在夸克动力学机 制知之甚少的情况下,从理论上严格计算夸克质量谱 是极为困难的,尚未见到有关的任何讨论,

本文采用一种唯象方法对重夸克 t b的质量作 了讨论,获得了令人满意的结果.假定重夸克碎裂函 数具有 U-分布规律 .函数的动力学参数 T U的味修正 与重夸克的质量效应等价.同时注意到碎裂函数的峰 值(即函数的平均动量分数)随重夸克质量的增大而 向大 z 方向移动的实验数据,唯象地计算了重夸克的 质量 ms_mb,所得结果与实验数据较好相符.

1 理论及实验数据

设重夸克以下列形式碎裂为重介子或重子

 $Q \twoheadrightarrow M(Q, \overline{q}) + q; Q \twoheadrightarrow B(Q, qq) + \overline{qq},$ (1)式中,Q表示重夸克,q表示轻夸克, \bar{q} 是 q的反夸克.

在高能条件下,重夸克的碎裂函数 DMQ DBQ和 介子、重子的结构函数一样都具有 U-分布形式,可分 别表为^[1,2]:

$$D_{M,\mathcal{Q}} = \frac{\Gamma[T(\mathcal{Q},\bar{q}) + U_{\mathcal{Q}}(q)]}{\Gamma[T(\mathcal{Q},q)]\Gamma[U_{\mathcal{Q}}(q)]}Z^{T(\mathcal{Q},\bar{q})-1} \times (1 - Z)^{U_{\mathcal{Q}}(q)-1}, \qquad (2)$$

$$D_{B/Q} = \frac{\Gamma [T(Q,qq) + U_Q(\overline{qq})]}{\Gamma [T(Q,qq)] \Gamma [U_Q(\overline{qq})]} Z^{T_{Q,qq)-1}} \times (1 - C_Q)^{U_Q(\overline{qq})-1}, \qquad (3)$$

 $Z)^{\cup \mathcal{Q}(\overline{qq})-1},$

式中. TU2分别为碎裂函数的动力学参数(动量分布 参数), Z 为动量分数, $\Gamma(\dots)$ 为 Γ 函数.

重重子和重介子碎裂函数的平均动量分数分别 被定义为:

$$\langle Z \rangle_{\mathcal{Q}}^{\bar{q}} = \frac{\Pi(Q,\bar{q})}{\Pi(Q,\bar{q}) + U_{\mathcal{Q}}(q)}, \qquad (4)$$

$$\langle Z \rangle_{\mathcal{Q}}^{q} = \frac{1(Q, qq)}{T(Q, qq) + U_{\mathcal{Q}}(\overline{qq})}.$$
 (5)

实验测得重夸克碎裂为重介子的碎裂函数峰值 (即平均动量分数)为^[3,4]:

 $\langle Z \rangle_c^{\overline{q}} = 0.46; \langle Z \rangle_b^{\overline{q}} = 0.73; \langle Z \rangle_t^{\overline{q}} = 0.98.$ (6)重夸克碎裂为重重子碎裂函数的峰值为^[5]:

 $\langle Z \rangle_{c}^{qq} = 0.62; \langle Z \rangle_{b}^{qq} = 0.81; \langle Z \rangle_{t}^{qq} = 0.98, (7)$ 式中,c为第二代的粲夸克,b t为第三代的底、顶夸 克,式(6)(7)表明,随着重夸克质量增大,碎裂函数 的平均动量分数向大 z方向偏移.因此,实验数据已

Guangxi Sciences, Vol. 11 No. 4, November 2003

²⁰⁰³⁻⁰³⁻²⁴收稿, 2003-05-27修回。

^{*} 中国工程物理研究院行业科学技术预研基金资助项目 (项目号: 990226)

²⁶²

明确指出,重夸克的质量与平均动量分数密切相关, 而重夸克 c b t的区别在于味荷 (即味量子数) 不同, 是味量子数对 b t 夸克有不同的质量效应 . 应对它们 加以味修正.

由式(4)(5)知重夸克的平均动量分数由碎裂 函数的动力学参数定义,因此完全可以认为动力学参 数的味修正与重夸克的质量效应是等价的.对介子过 程和重子过程可以表为:

$$T(Q,\bar{q}) = \lambda (m_Q + m_{\bar{q}}), \qquad (8)$$

$$T(Q,qq) = \lambda' (m_Q + m_{qq}), \qquad (9)$$

式中, $\lambda \lambda'$ 为常数.

对 t c夸克,由式 (8), (9) 显然可以得到

$$\frac{T(t,\bar{q})}{T(c,q)} = \frac{m_t + m_{\bar{q}}}{m_c + m_{\bar{u}}},$$
(10)

$$\frac{\overline{\mathrm{T}}(t,qq)}{\overline{\mathrm{T}}(c,qq)} = \frac{m_t + m_{qq}}{m_c + m_{qq}}.$$
(11)

由式(4)(5)可得,当重夸克 t 碎裂为重介子或 重重子时动力学参数 TU与平均动量分数的关系式 为:

$$\frac{\overline{\mathrm{T}}(t,\overline{q})}{\overline{\mathrm{T}}(c,\overline{q})} = \frac{\overline{\mathrm{U}}(q)\langle Z\rangle_{c}^{q}\left(1-\langle Z\rangle_{c}^{q}\right)}{\mathrm{U}(q)\langle Z\rangle_{c}^{\overline{q}}\left(1-\langle Z\rangle_{t}^{\overline{q}}\right)},$$
(12)
$$\frac{\overline{\mathrm{T}}(t,qq)}{\overline{\mathrm{T}}(c,qq)} = \frac{\overline{\mathrm{U}}(q\overline{q})\langle Z\rangle_{c}^{qq}\left(1-\langle Z\rangle_{c}^{qq}\right)}{\mathrm{U}(q\overline{q})\langle Z\rangle_{c}^{qq}\left(1-\langle Z\rangle_{c}^{qq}\right)}.$$
(13)

将式(10)代入(12),式(11)代入(13),可得顶夸 克 t的质量计算公式.对碎裂为重介子和重重子过程 分别表为:

$$\frac{m_t + m_{\bar{q}}}{m_c + m_{\bar{q}}} = \frac{U(q) \langle Z \rangle_t^q (1 - \langle Z \rangle_c^q)}{U_c(q) \langle Z \rangle_c^{\bar{q}} (1 - \langle Z \rangle_t^{\bar{q}})},$$
(14)

$$\frac{m_t + m_{qq}}{m_c + m_{qq}} = \frac{\underline{\mathrm{U}}(\underline{qq}) \langle \underline{Z} \rangle_c^{q} (1 - \langle \underline{Z} \rangle_c^{q})}{\underline{\mathrm{U}}(\underline{qq}) \langle \underline{Z} \rangle_c^{qq} (1 - \langle \underline{Z} \rangle_t^{qq})}, \quad (15)$$

式中,把 m_t 换成 m_b , U(q)换成 U(q), 把 $U(\overline{qq})$ 换成 $U_{i}(\overline{qq}), \langle Z \rangle^{\overline{q}}$ 换成 $\langle Z \rangle^{\overline{g}}, \langle Z \rangle^{\overline{qq}}$ 换成 $\langle Z \rangle^{\overline{qq}},$ 即可算出 m_{b} 的值.

2 重夸克 *t* b质量计算

对重夸克 t 碎裂为重介子的过程,利用公式 (14) 计算.关于 $\langle Z \rangle_{t}^{\bar{q}}, \langle Z \rangle_{c}^{\bar{q}}$ 取式(6)给出的值^[3,4], m_{c} 取 1.5 GeV, $m_q = m_q \cong 0.3$ GeV, $U_c(q) = 2.5$, U(q) = 4.5, 代入公式 (14) 算得重夸克 t的质量 mt 为:

 $m_t \cong 171.42 \text{ GeV},$ (16)t夸克的实验值为 m = 174 GeV^[6];误差约为 2%,计 算值与实验值相符较好.

若在式 (14) 中略去 U(q) 与 U(q) 间的差值,取 $U(q) = U(q) = 2.5, 则算得 m_t \cong 95.1 \text{ GeV}$,结果与 实验值相差较大.因为 mi比 mi约大 116倍,重夸克的 味数不仅对动力学参数 「有较大的影响,对动力学参 数 U也有一定贡献, U(q) 给出的质量效应自然要比 U(q)大一些,两者不能视为等同.

对于重夸克 t碎裂为重重子的过程,取 mc= 1.5 GeV, $m_{qq} = 0.6$ GeV, $U_c(\overline{qq}) = 2.5^{[5]}, \langle Z \rangle_c^{qq}, \langle Z \rangle_t^{qq} \mathbb{H}$ 式 (7) 的结果^[5],代入式 (15) 算得:

$$m_t = 162 \text{ GeV}, \qquad (17)$$

可见重子过程算得的结果比介子过程计算得到的结 果要差一些.因为重子为三体结构要比二体结构的介 子复杂,一些因素还尚未涉及之故.

对 b夸克的质量 m_b .只用介子过程进行计算.取 $m_c = 1.5 \text{ GeV}, m_q = 0.3 \text{ GeV}, \langle Z \rangle_{\circ}^{\bar{q}} \langle Z \rangle_{\bar{s}}^{\bar{q}}$ 的值已由式 (6)给出^[3,4],近似取 $U_{(q)} \approx U_{(q)} = 2.5$,将数据代 入式 (14), 不难算得:

 $m_b \approx 5.48$ GeV. (18)重夸克 b的实验值 $m_b \approx 4.8 \text{ GeV}^{[6]}$,计算值与实验值 也比较接近.

3 讨论

据以上分析计算,可以得到下面几点结论:

(i) 在夸克层次或亚夸克层次发生的物理过程均 属高能过程 重子 介子的结构函数及重夸克碎裂为 重重子、重介子的碎裂函数,其动量分布均为 U_分布 或 □-分布 .在高能下重子、介子的自旋作用已相对削 弱,U_分布、「_分布是玻色子、费米子动量分布函数 的统一表示式,采用的分布函数是正确的.

(ii) 计算结果表明,不论对 mt.还是对 mb 的计算 结果都与实验较好相符,说明文中提出 U-分布的动 力学参数 T U的味修正与重夸克的质量效应等价假 设是成立的.

对质差很大的重夸克之间,动力学参数 U(q) 与 U(q)的差值不能忽略;对于质量相近的重夸克 b c, 则 U(q) 与 U(q) 的差别较小,基本相近.这一结果用 平均动量分数 (Z) 的定义 (4) (5),实验数据的值式 (6) (7) 及式(10) (11) 也不难算出: 若选 U(q) = 2.5,则得 U(q) = 4.27(前面计算采用了实验结果 4.5),算得 U₁(q) = 2.23(前面计算采用了 2.5).故文 中对 U参数的采用是合理的.

(iii) 20世纪 90年中期,实验发现了 e+ ē→ $(q')^{-\frac{1}{3}}$ + $(q')^{-\frac{1}{3}}$ 的过程,有人认为 $(q')^{-\frac{1}{3}}$ 是电荷为 $Q = -\frac{1}{3}$ 的第四代下夸克.根据我们提出的亚夸克 模型^[7]及 Preon模型的分析认为, $(q')^{-\frac{1}{3}}$ 并不是第四 代的下夸克, $(q')^{-\frac{1}{3}} = (bgg)$ 是 $Q = -\frac{1}{3}$, $I = 0, I_3$ = 0,重子数 $B = + \frac{1}{3}$,轻子数 $l = + 1, Y = -\frac{2}{3}$, (下转第26额 Continue on page 268)

广西科学 2003年 11月 第 10 卷第 4期

背景噪声环境中提取诱发电位信号.

(ii)相干平均技术简单,硬件容易实现;加权平 均技术可以有效地减少叠代次数,适用于背景噪声非 稳定情况,但它们都需要上百甚至上千次刺激才能提 取出有效的诱发电位信号;而小波变换算法则在单次 刺激的情况下,就能获得较高的信噪比及满意的波形 特征.

(iii) 由于人体刺激的次数过多,容易引起神经 系统的疲劳和习惯性反应,产生的 EP的潜伏期和波 幅都有可能变化,因此,用平均技术有时可能得的是 一畸变信号;而经过小波变换技术处理过的信号的噪 声仍然是白噪声,具有较高的可信度,这将为进一步 的特征提取和模式识别提供可靠的分析数据,从而为 应用提供极大的方便.

参考文献

1 吕国义.临床麻醉学.天津:天津科学技术出版社,1995.27 ~ 137.

- 2 Abinash Nayak, Rob J Roy. Anesthesia control using midlatency auditory evoked potentials. IEEE Transactio on Biomedical Engineering, 1998, 45(4): 409-421.
- 3 孙永海,岳 云.中潜伏期听觉诱发脑电与麻醉深度的判断.国外医学(麻醉学与复苏分册),1997,18(1):5 ト 54.
- 4 杨福生,高上凯.生物医学信号处理.北京:高等教育出版 社,1995.564~604.
- 5 徐佩霞,孙功宪.小波分析与应用实例.合肥:中国科技大 学出版社,1996. 1~153.
- 6 邱锦波,朱光喜,王 曜.一种基于小波变换的视频对象分割算法.计算机工程,2002,28(5):72~74.
- 7 赵松年,熊小芸.子波变换与子波分析.北京:电子工业出版社,1997. ト 134.
- 8 Maria Hansson, Tomas Gansler, Goran Salomonsson. A system for tracking changes in the mid-Latency evoked potentials during anesthesia. IEEE Transactio on Biomedical Engineering, 1998, 45(3): 323~ 334.

(责任编辑:邓大玉)

(上接第 263页 Continue from page 263)

C(色) = 3的同位旋单态,具有轻子和夸克双重性质的"轻子型夸克",不能被三代粒子所包容,我们定名为"编外粒子"^[7].因平均动量分数 $\langle Z \rangle$ 的区间为 $0 \leq \langle Z \rangle \leq 1, \pm t$ 夸克很重,实验已给出 $\langle Z \rangle \overline{t} \approx 0.98, \langle Z \rangle \overline{t} \approx 0.98, 已非常接近区间的上界, t 是第三代顶夸克,事实上实验已判定,夸克一轻子只可能有三代,不可能再容纳第四代夸克了,排除了存在第四代夸克的观点.$

参考文献

- Jiao Shanqing, Feng Zhenyong. The structure function of nucleon-Fourth Asia Pacific Physics Conference, South Korea, 1990. 129-132.
- 2 焦善庆,杨本立,江光佐.价-海夸克混合模型的β分布、

r-分布.云南大学学报(自然科学版),2002,24(1):34~ 37.

- 3 Izen J M. The mean momentum fraction of the course. DESY, 1984, 84~ 87.
- 4 Kinoshita K. The meson fragmentation course of heavy quarks. Prog Theor Phys, 1986, 75: 84~ 87.
- 5 Noda M, Tashira T, Kinnoshita. The baryon fragmentation course of heavy quarks. Prog Theor Phys, 1985, 74 1084~ 1086.
- 6 沈 经.场和粒子理论的实验问题.北京:世界学术文库出版社,2000.578~582.
- 7 焦善庆,兰其开.亚夸克理论.重庆:重庆出版社,1996.191 ~ 198.

(责任编辑:黎贞崇)