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Characteristics of Open Subtrees
Without Periodic Points of A Tree Map
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Abstract Let Tbe a tree and f'be a continuous map from T into itself. Some pwoperties of open subtrees of

Twithout periodic points of fare discussed
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1 Introduction

In this paper, let N be the set of all natural num-
bers. Write Z' = N U {0}, Ny = {1, 2, = n} and Z, =
{0} U Nyforany n € N.

Let T be a tree (i e. an one-dimensional compact
connected branched manifold without cycles) . A subtree of
Tis a subset of 7. which is a tree itself. For any x € T,
dernote by V(x) the number of connected comporents of 7'
—{x}.B(T)={x € T:V(x) =3} is called the set of
branched points of 7Tand E(T)= {x € T: V(x)= 1} is
called the set of end points of 7. Tet NE(T) be the num-
ber of end points of 7 Let A C T, we use 4s 4,| A] and

#(A) 1o denote the closure of A, the interior of A, the
smallest subtree of T containing A and the number of points
in 4 respectively. For any x, y € T, we shall use[ x, y] to
derote [ { x, y}] . Define (x, y] =[x, y] —{x} and (x,
y)= (x,y] —{y}. For any x € T and any € > 0,
write B (x, €)= {y € T:d(x, y)< &} and B; (x, €),
By (x,€), -5 By(x)(x, &) be nnected components of
B(x, &)~ {x}.

Let C°(T)be the set of all continuous maps from T'to
itself. For any /€ CO(T)andanyx € T. the set of fixed
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tree map, - limit set, open subtree, recurrent points non-wandering set

points of fi the set of m- periodic points of f, the w- limit
set of x, the set of nomwandering points of fwill be denot-
ed by F()y Pu(f)y w(x, [ Q(f) respectively. Write

ox.,) = {(fG&rk € Z ) ad P
Block and Coven in Reference | 1] studied some

properties of open subintervals of [0, 1] without periodic
points of £ € C° ([0, 1] ) and obtained the following theo-
rem.

Theorem A letf € C°([ 0. 1] ).

(D Ifxe€ Q(f)_m, then there exists a 0>
Osuch that, for any € € (0, O we haveJ () [ (J1)= ¢
for all n=> 0, where J = [ x — &, x + €| and J; denotes
exactly one of [ x, x €], [x — & x] .

(2) Let J be an open subinterval of [ 0
contains mo periodic point of f. Then

1] which

(i) J contains at most one point of any limit set
o (x).
Gi) if x € J is nonrwandering, then no other point
of its trajectory lies inJ.
In this note, we extend Theorem A to a tree map and
obtain the following two theorems.
Theorem 1 Let / € C°(T)and m = V(x). If x
€ Q()— P(f), then there exista &> Oand j € N,
such that
B(x, ) f"B;(x, 9)= Pforall n € N.
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Theorem 2 letf € CO(T),UCT*?f)bean
open subtree and s = NE(U). Then

(D foray x €T, FWN wlx, H))<s—1.

(2) for any x € Q(f), FW N Olx, )< s5—
1.

2 Some Lemmas

To prove the main theorems, we first give some lem-
mas.

Lemma 1’ LethC'O(T).Ifthereexistx,yE
T such that [ x, y] C [f(x), f()], then [x y] )
F(f)#¢

Lemma2 Letf € C' (T and U CT— P(f) be
an open subtree. Suppose x € U such that /" (x) € U for
some m & N. If Vis a connected component of
U— {x} containing no f" (x), then VN O (x, f) =
P.

Proof We first show that for any & € N, /" (x)
belongs to the connected component Wof T—{ x} contain-

ing /" (x).
Assume on the contrary that for some s € N, /" (x)

EW. let k= min{ s; " (x) & W). Then we have
x €[SV Go, o) STEEP X 1 (0]

So there exists a point ¢ € [ x, /"(x)] such that
f&m((g) = /" (x). By Lemma 1. it follows that [ x. C] N
F(fm) 7 ¢. This is a contradiction.

Now we show V() O(x, /) = ¢.

Assume on the contrary that ¥V () O(x, f) #

®. Then there exists a n € N such that /' (x) € V. From
the above we know that /"(x) € ¥ for any k €
N . Therefore, /" (x) € W) V= ¢. This is a contra-
diction.
Let £ € C°(T) and U be a sub-
tree. Let x1, x2, -+-, Xm be m boundary points of U. If [ xi,
f(x)] N U Pfor each i € Ny, then U () F(f) #
¢.

Lemma 37

3 The Proof of the Main Theorems

Proof of Theorem 1  Since x € Q(f)— P (f), we
can take €9=> 0 such that B (x, €0) (1 P(f) = ¢ and
B(x,g) (N B(T) C{x}. By Lemma 2. 1 in Reference
[ 3], it follows that there exist points xx— x in T and nat-
ural numbers 1y —> ©©such that £« Gy )= x forallk €N
. Without loss of generality, we can suppose xc € B (x,
g) forall k € N.
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Qaim 1 There at least exists a i © Nm, such that
{x} N Bi(x, 80) = ¢

Assume on the contraty that for each i € Ny, { xi} )
Bi(x, &) # ¢ . Let y; € {xi) N Bi(xs €0) and /1 (y)
= x for some ki € N . By Lemma 2, there exist some n
€ Nsuch that [ /vy yi] (N [y x] 7# Ploreach i €
Ny » it follows from Lemma 3 that B (x, €9) | P(f) #
¢. This is a contradiction.

Without loss of generality, we may suppose that
Bilx, &) N {xt) & Plor 1<<i<< [ and Bi(x &) )
{x} = Plor I+ 1< i<<m. Itfollows from Lemma 2 and
Lemma 3 that there exist some / +-1<C A< m such that
Bj(x, ) f (Ba(x, ©)) = Pforall n € N and each
Jj € Na—{A}. Wemay suppose that if [+ 1< h<< A<
m, then B;(x, &) ) /" (Ba(x, €)) = Pforaln € N
and eachj © N, — {A}.

Qaim 2 There exist some # << A<_ m and a &; €
(0, &) such that

f'(Ba(x, €)) () Bx(x, 1) = Plorall n € N.
Assume on the contrary that for each & <X j < m and
any € € (0, &),

£ (Bj(x, @) Bi (x, €0) 7 P for some mj EN.
Then, by Proposition IV. 6 in Reference [ 1] and the re-
mark following its proof, for each << j < m, there exist
a point y; € Tand a sequence of integers mf — ©©such
that "1 (y) € Cea () for all k € N and /% ()
— x as k— o2 Thus, it follows from Lemma 2 and Lem-
ma 3 that B (x, €0) [ P (f) 7 ¢. This is a contradiction.

Take 0= €, by Claim 2, we have that
S (Bi(x, ) B(x, = Pforaln € N.
(1) Put FWUN olx, H)

= k, then k7=°°. Otherwise there exists some component

Proof of Theorem 2

of U — B(T) containing infinite points of w(x, f),
which is impossible. Therefore there exist k pairwise disjoint
denoted by Ui, Up -5 Uk »
such that every U; (i € Ny) is contained in one of the con-
nected components of U— { B(T) U E(T)} and every
Ui (i € Nk) contains infinite points of O (x, /). Now we

open connected subsets,

prove (1) of Theorem 2 by induction.

G) If s = 2, it is clear that £ << 1.

(i) Assume that (1) of Theorem 2 holds for2 << s
< m, that is to say k<< s— 1. Now we show that (1) of
Theorem 2 holds for s = m + 1.
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Let y1, y2, -++ ys be the end points of U and zi be the
nearest branched point to y; for each i € N;.

Qaim 3 There must exists a i € N such that (y;,
z) N (j_L:kle,-): ¢,

Assume on the contraty that for each j € Ns, we
have some Ui C (yj, z;) . For myf(x),f(x) € Uwith
L N EN, if << X\ then f (x) € (f* (x)s ;) . In fact,
if 1 (x) € (D y) s puta= f(x), thenf (x)=
f}\il (a). By Lemma 2, we know that Q/M NOox fH=

®, which is a contradiction.

For each i © Ns, choose Ai>> [iwith Ai, /i € N and
FiGe filx) € Ui Since fi(x) € (Ffi(x)sy), by
Lemma 2, we have

[ AGD, i) NAG, filx)] # ¢
forall k € N .

However, it follows fiom Lemma 3 that U () P(f) # ¢,
which contradicts to U () P (f) = ¢.

Without loss of generality, we may assume that (y1,

z N (/QIU,') =® X1= (y1,21)s X2 ++ Xjare [ con-
nected éomponents of U—{zi} and ks = NE(X)(i €
Np). Thenwe have

Ith—1tkh—1+ tk—1=s
and

k<<s—1,i €23 - [}.

For each i € {2,3, ---, [} , let s; be the number of Uj in

Xi . By the inductive hypothesis, we know s; << k; —

1. Therefore
k=s+tsstFts<h—l+tki—1+ -+

ki—1=s—1=m

This completes the proof of (1) of Theorem.

(2) For any x € Q(f), there exist points xx —> x
and integers ny —> < such that /* (x¢) = x. It is clear
that for any i € N, we have

£ £ GO and £ f Gad) = £ (x).

Put #(U N Ox, ) = r, thenr# o=, Other-
wise there exists some component of U— B (T') conlaining
infinite points of O (x, f),
S ff2(x) -y £ (x) be r points of U O (x, 1)

. Thus there exist r paiwise disjoint open mnnected sub-

which is impossible. Let

sets, denoted by Uy, Uas -5 Uy, such that every U;whose

an end is f/"i(x) (i € N,) is ontained in one of the con-
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nected componernts of U — { B(T) U E(T)} and every
U; (i € N,) contains infinite points of { /" (x¢)}. By tak-
ing a subsequence, we may assume that for each i € N,
and each k © N, " Coer1) € (F"i(x), [ (xe)) CU.
Now we will pove (2) of Theorem 2 by induction.

G) If s= 2, itis clear that r << 1.

(i) Assume that (2) of Theorem 2 holds for 2 << s
< m, that is to say 7 << s— 1. Now we show that 2) of
Theorem holds for s = m + 1.

Let y15 y2, -+5 ys be the end points of U and zi be the
nearest branched point to y; for each i € N;.

Claim 4 There must exists a i € N; such that (y;,

2N U= @

Assume on the contrary that for each j € Ns, we
have some U; C (yj,z) . By Lemma 3, we have that
i) € (i), y) and (G, f1i(x)) N
(" Cxi)s f7 () 7 Ploreach s, k © N and each i €
N;. Thus, it follows from Lemma 3 that U [} P(f) # ¢
. This is a contradiction.

Without loss of gererality, we may assume that (yi,
20N (JQIU]'): ? X1= (Y1 z1)s Xop -+ Xjare [ con-

nected components of U — {z1} and k; = NE (X;)(i €
Ni). Then we have

l1th—1+k—1+ +k—1=s3s
and

k<<s—1,i € {23 - [}.

For each i € {2, 3, -+ [}, let s;be the number of Uj
in Xi . By the inductive hypothesis, we know si << ki— 1.
Therefore

r=stat ts<h— 1tk 1+ -+
kk—1=s—1=m.

This completes the proof of (2) of Theorem.
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