DOT: 10. 13656 /j . crki . gxkx. 2006. (. 006

Guangxi Sciences 2005, 12(2): 97 101

A Generalization of Auslander-Buchsbaum Theorem
Auslander-Buchsbaum

Tang Gaohua', Yin Xiaobin’, Tong W enting’
EE A BRRAR? L AL

( 1. Dept. of Math.& Comp. Sci., Guangxi Teachers Education Coll., Nanning, Guangxi,
530001, China; 2 Dept.of Math., Anhui Normal Univ., Wuhu, Anhui, 241000, China;
3. Dept. of Math. , Nanjing Univ. , Nanjing, Jiangsu, 210093, China)

(1. , 530001; 2 ,

241000; 3. , 210093)

Abstract The Auslander-Buchsbaum Theorem states that pdeM+ CodimzM = gl.dimR for
each finitely generated nonzero module M over a Noetherian local ring R with finite global
dimension. This theorem was generalized to nonzero finitely presented Noetherian modules M
over a coherent local ring R with finitely generated maximal ideal J and finite weak global
dimension( [2]). Our aim is to extend the Auslander-Buchsbaum Theorem to any commutative
coherent rings.
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1 Introduction

Throughout this paper it is assumed that all
rings are commutative rings and all modules are
unitary. Our aim in this paper is to extend the
Auslander-Buchsbaum Theorem to any commutative
coherent rings.

Let R be a ring and M a R—module. Recall that
M is called finitely presented if there is a finitely
generated R -module P and a finitely generated
submodule N of P such that P /N2 M. R is called a
coherent ring if every finitely generated ideal of R is
finitely presented.
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In this paper, we use Spec(R),Max(R),
gl.dimR,w.gl.dimR,pdr (M) ,fdr (M),
Codimr (M) for the prime spectrum, the maximal
spectrum, global dimension, weak global dimension
of R,
codimension of R—module M, respectively.

The wellknown Auslander-Buchsbaum
Theorem states that pdeM + CodimreM = gl.dimR
for each finitely generated nonzero module M over a
Noetherian  local global
dimension!'' . In reference [2], it has been proved
that the Auslander-Buchsbaum formula was true for

projective dimension, flat dimension,

ring R with finite

a finitely presented Noetherian R -module M over a

coherent local ring R with finitely generated
maximal ideal and finite weak global dimension.

In Section 2, we extend this result to finitely
( Noetherian )

commutative coherent rings.

presented modules over any

In Section 3, we give some examples and

remarks on the main results in Section 2.
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2 Main results

Let R be a ring and M a R -module. We set
Z(M)= {x€ R;xa= Oforsomea? 0in M}, the
set of zero divisors of M inR.

First we give several Lemmas.

Lemma 2.1 LetR bea ring and/ a finitely
generated ideal in R. Let M be a nonzero Noetherian
R-module and N a proper submodule of M. 1If 1<
Z(M IN) then there exists an element a&C M but o
N such that la= N.

In particular, if I & Z(M) then there exists a
nonzero elementa€ M such that Ia = 0.

Proof See reference [3, Theoreml. 3].

Lemma 2. 2 Let R be a coherent ring, M a
finitely presented R -module. For any natural

numbers n, the following statements are
equivament.

(a) pda b m;

(b) fdr M n;

(¢) Tor i (M,R Im) =
and any i== 1.

Proof See reference [4, Corollay 2. 5.5 and
Corollay 2. 5. 10].

By using of localization, from Lemma 2. 2, it is

0, for any m& Max (R)

easy to get the following consequence.

Corollary 2.3 Let R be a coherent ring, M a
finitely presented R -module and n a non-negative
integer. Then

(a) pdreM = fdrM,

(b) fdeM = nifand only if fdr, Mn<C n for all
m& Max (R) and there exists at least one maximal

ideal m such that f'de Mn = fdeM = n.

In the following discussion, the maximal ideals
m which satisfying fdr, Mn = fdrM will play a very
important role.

Lemma 2. 4 LetR be a coherent ring andm&
Max (R). Then

w.gl.dimRn= fdr(R/m) = fdr,(Rn/lmn).

Proof By reference [5, Theorem 5],
w.gl.dimRn = fdr (Rn/mm) for Ru is a coherent
local ring with unique maximal ideal”mn. So we need
only to provefdr(R/m) = fdr (Rn imn). Sincemn
= R ifm# m € Max (R) and from reference [4,
Theorem 1. 3. 14], we have

fdr (R Im) = sup{fdr, (R im)n'|lm € Max(R))

= sup{fdr, (R I )| m'€ Max(R)} =
Sfdr, (Rn lmm).

Definition 2.5 LetR be a ring, [ anideal of R
and M a R -module. we define

I-odimr (M) = sup {nl T+ [ is a regularM—
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sequenceinl} andodimr (M)= sup{I-codimr (M)| I

is an ideal of R }, which are called the codimension
of M in I and codimension of M respectively. Since
every ideal of R must be contained in a maximal ideal
of R, we havewdimr (M) =

a maximal ideal of R }.

sup{m-odimr(M)| m is

Theorem 2. 6 LetR be acoherent ring and M a
finitely presented R—module. If 7 is a maximal ideal
of R satisfying fdr, Mn = fdeM= n <o andTi -,
Tis a regular M=sequence inm, then

pdr(M (L [ TYM) = pdeM+ s
and pdr (Mn /(Ti TYMw) = pde(M /(L1 ,
Tym).

Proof For a set M, we useidv to denote the
identity map of M. We prove it by induction ons.

Ifs= 1, then & m is a regular M —sequence and
thus there exists a short exact sequence

0— M~ M~ MTM~ o, (1

where f(x) = Tx,Vx€ M. So we have a long
exact sequence

H,
- — Tor- I(M,R/m)j_l’ Tor (M,R Im)—>
A

H
Tor 1 (M /LM, R/m) —— Tor (M,Rim) —
TorjR(M,R m)—> -

Vi= 0H = Toif(f,idemw) = Torf (Tidu,
idem) = Tori (idw, Bidrm)= Tor (idu,0)= 0.

Thus, Vj= 0, we have a short exact
sequence

0> Toris 1 (M, R Im)—> Tori (M /LM, R Im)
— Torf (M,R Im)— O. (2)

Since fdiM = fdr Mn = n <o, Tori (M,
Rim) = 0 and Tor (Mw,Rulmn) 7 0. Hence
Tor (M,R /m) # 0. Thus from Sequence ( 2),
Tork 1 (M /LM, R Im)7 0Oand therefore, by Lemma
2.2, pde(M/LM)= n+ 1= pdiM + 1. By
Sequence (1) and reference [6, Lemma 9.26],

de(M/EM) < deM + 1= n+ 1. Hence
pde(M/LM) = pdrM + 1 From the above
discussion, we also have pde(M/LM) =

dem (M/EM)m = n+ 1.

Now supposes> 1,Ti,--- Tis a M sequencein

m. Set M = M/TM. By the above proof, deM
= pdz, (M yw = pdeM+ 1 and it is clear that L,
. Tis a regular M -sequence inm. Hence, by the
inductive hypothesis, we have de(M /(L2
M Y= pdeM+ s- 1= pdeM+ s, M /(L ,

T)M (M LMy 1k I)M/TIM)@ M/I(h,
T)Mandde(M /(T JOYM ) =
de (Mn /(G S TYM ).
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Thus pde (M /(1 - [TYM) = pdeM+ s
and pde(M /(L TYM) = pde (Mu /(B ,
TYMn) = pde, (Mo /(T TYMa ).

Lemma 2.7 Let R be a coherent ring and M a
finitely presented noetherian R -module and m a
maximal ideal of R satisfying pdr Mn = pdrM. If
w.gl.dimRn <°° thenpdiM= w.gl.dimRn if and
only if there exists a nonzero submoduleN of M such
thatmN = 0.

Proof If there exists a non—zero submodule N
of M such that mN = 0, we may assume N =
(x). The homomorphism R~ N, in whichr& Ris
mapped into7x , has kerneln, hence N2 R /m, and
then we have an exact sequence 0> R /m—> M—
M /IN— 0. By localization, the sequence

0> Ruw lmw—> Mw—> Myu INnv—> 0 (3)
is also exact. Since w.gl.dimRn = n < ©©, by
Lemma 2. 4, W.gl. dimRn = dem(R’" /mm) and by
reference [4, Theorem 1.3. 9], w.gl. dimRn =
sup{fdr, (Rn NI a finitely generated ideal of Rn}
and by referencee[7, Theorem 1. 2.5], fdr (Rn /I)
= sup{il Torf (Ru /I ,Rn lmn) 7 0}, thus there

exists a finitely generated ideal / of R» such that
ng dimRn = dem (Rm /[) = n and then

Toanm (Rm /I,Rm /mm)¢ Oand TOV{S@ 1 (K,Rm /mm) = 0

for any Rw— module K. Write the long
sequence of TorR’”(Rm /I, — ) resulting from the

exact

short exact sequence (3) to obtain exact sequence 0
—  Torsn(Rm /I, Ru lmn) =  Torsm (Rm /I, Mn) and
then Tonr (Rn /I, Mn) 7 0, which shows that
Sfdr Mn= n. Butw.gl.dimRn = n. Hencefdr, Mn
= w.gl.dimRn= nand then pde M= w.gl.dimRn.

Now supposepdrM= w.gl.dimRn, we need to
prove there exists a nonzero submodule N of M such
that mN = 0. Otherwise, by Lemma 2.1, there
exists T€ m such that Tis not a zero-divisor on M
and then by Theorem 2.6, pdr (Mn /[IMn) =
pdeM [IM = pdeM + 1 =
w.gl.dimRn. This
proof.

w.gl.dimRn+ 1>
contradiction completes our

Now,we can prove our main result, which is a
generalization of AuslanderBuchsbaum Theorem
over any commutative rings.

Theorem 2.8 Let R be a coherent ring, M a
nonzero R -module and m a maximal ideal of R
satisfying pde Mn = pdrM.

(1) If M is finitely presented, then pdrM +
m-odimeM< w.gl.dimRn;

(2) If M is a finitely presented Noetherian R —

module and w.gl. dim Rn , then pdrM +

< ©O
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m-codimr M= w.gl.dimRn.

Proof (1) Let i+, L be any M —sequences in
m. By Theorem 2 6,

pdeM+ s= pde (M /(L,-- [ TYM)= pde M+
s= pdr, (Mn /(T [ TYMn < w.gl.dimRn , which
implies that pdeM+ m — @dimrM< w. gl.dimRn.

(2) By (1), m-odimitM<< w.gl.dimR. <

©o. Suppose m-codimrM = 5. Then there exists a
regular M —sequence 1 -+, Tinm. By Theorem 2. 6,
we have pdeiM + m-odimeM = pdiM + s =
pdr (M (T ;- [ TYM). Now we need only to show
that pde (M /(T ;- [ TYM) = w.gl.dimRn. Thus,
by Lemma 2 7, we need only to prove m annihilates
submodule of M /(L
T)M. Otherwise, since M is a finitely presented
Noetherian R -module, so is M /(T T)M. By
Lemma 2 1, there exists L 1 € m such that L 1 is
not a zero divisor on M /(L -+, K)M. This means
that Ti -« ,'[,L 1 is a regular M —sequence inm , and
therefore m codimr M= s+ 1, which contradicts the

some nonzero

above hypothesis.
Hence pdr M+ m-codimeM = w.gl.dimRn.
Corollary 2.9 Let R be a coherent local ring
and M a nonzero R—module. Then

(1) If M is a non—zero finitely presented R-
module, then pdeM+ codime M< w.gl.dimR.

(2) ¥ M is a non—zero finitely presented
Noetherian R -module and w. gl. dimR < o, then
pdr M+ codimr M= w.gl.dimR.

Corollary 2. 10 LetR be a Noetherian ring and
M a non-zero finitely generated R—module andm &
Max(R) satisfying pdeM = pdr Mn and gl. dim Ru
<00, ThenpdeM+ m-codimrM = gl.dimRn.

Corollary 2. 11 Let R be a coherent ring and M
anon—zerofinitely presentedNoetherianR —-module. If
m & Max(R) satisfies pdeM = pdr My and
w.gl.dimRn <>, thenm-codimr M = w@dimg, Mn.

Proof By Theorem 2 8(2), we have pdrM+
m-codimrM= w. gl.dimRn. FromCorollary2. 9, we
have pdr, Mn+ codimr Mn = w.gl.dimRn. From
the assumption pdeM = pdr M» and the above two
equations, we get m-codimr M = codimr, M.
212  TLet (R,m) be a coherent

local ring with maximal ideal m and P a finitely

Corollary

generated prime ideal properly contained inm.
(1) fw.gl.dimR= 2, thenP must be

projective, therefore P must be a principal ideal;
(2) fw.gl.dimR= 3, thenpdrP<{ 1.
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Proof (1) Let M= R /P. By the hypothesis,
there exists 1€ m — P. Obviously, Lis not a zero
divisor onM for P is a prime ideal. Thus codimz R /P

= land by Corllary 2.9(1), pdrR/P<< 1. The
exactness of the short sequence 60> P> R—> R /P>
Oshows thatpdrP= Oand therefore Pis a projective
R-module and therefore P is free for R is a local
ring. The fact that R is a domain implies that P is a

principal ideal.

(2) The proof of (2) is similar to that of (1),

we omit it.
3 Examples and remarks

Example 3.1 Let (R,m) be an umbrella ring
with unique maximal ideal m (see reference [ 8] for
the definition) . By reference [9, Example 3], we
know that R is
w.gl.dim R= gl.dimR= 2andm can be generated

a coherent local domain and

by a two-element R—sequence {’II,’E} and there is a
maximal non-finitely generated prime ideal P of
R . So R is a nonNoetherian coherent local ring.
(1) Let M = R/m. Then M is a finitely
presented Noetherian R -module. It is easy to verify
that codimeM = O,pdrM = fdrM =
pdrM+ wodimrM= w.gl.dim R.

(2)Let M = R/(T), where (1) is a principal
prime ideal of R. ThenM is also a finitely presented
Noetherian R -module. We can verify that codimr M
= 1,pdeM = fdrM = 1 and the equality pde M+
wdimeM= w.gl.dim R holds.

(3)Let M= m= (L, 1). Then M is a finitely
presented non—-Noetherian R -module and it is easy
to verify thatcodimeM = 1andpdeM = fdrM= 1.
Hence pdeM+ w@dimrM= w.gl.dim R.

(4) Let M= () be a principal ideal of R. Then
M= R is a finitely presented non-Noetherian R -
2,pdrM = 0and
w.gl.dim R also

2, and hence

module and obviously codimrM =
therefore pde M + codimr M =
holds.

(5) Let M= R /P, where Pis the maximal non—
finitely generated prime ideal of R. Then M is a
Noetherian R -module but not a finitely presented R—
module by reference [6, Corollary 3. 63]. It is easy
to verify that codimrM = 2. By reference |4,
Theorem 6. 3. 3], PisaflatR -module. fR /P is flat
then it is free by reference [ 10, Theorem 7. 10],
which implies that P is a principal ideal of R, a
contradiction. Hence fdrR/P = 1 and therefore
pdrM+ w@dimeM= 1+ 2= 3> w.gl.dimR.

Example 3.2 LetR= {f(x)€ QO[x] f(0)E
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Z}, where Qs the field of rational numbers and Z is

the ring of integral numbers. By reference [ 11,
Theorem 1 and Theorem 2], we have Max (R) =
{pR|p is a prime number in Z U {p(x)R|p(x) is
an irreducible polynomiake Q[x Jandp(0)= lor-—
1} and SpecR = MaX(R)U {PD:' N 0} , Where P- =
{(f(x)€ RIf(0) = 0} is the unique nonfinitely
generated prime ideal of R and P~ & pR for any
prime numbers p € Z and w.gl.dim R= 1=
w.gl.dim Rn V meE Max(R) and Ris a Bezout ring
( therefore a coherent ring ). Clearly, R is not a
semilocal ring.

(HY & R,B£L 0, letM= R /(T). Obviously,
M is a finitely presented R -module and pdrM =
1. By using of Theorem 2. 8(2),we can verify that
if m & Max(R) satisfies pde, Mn = pdeM then
m-codimekM = 0. Hence the equality pdrM +
m-codimr M= w.gl.dim Ru holds. (Notice that M=
R /(T) may be Noetherian or nonNoetherian. For
example, R /(8)~ Z/(8) is a Noetherian, but R /(x)
is not a Noetherian R -module) .

(2)LetM = R /P-. ThenM is a Noetherian R—
module. By reference [7, Corollary 3. 63], M is not
finitely presented. We can also verify that for any
prime numbers p € Z,fdr My = fdeM= 1 and
(p)-codimr M= 1. ThusfdrM+ (p)-codimrM= 2
> w.gl.dimRy).

By observing the above examples, we have the
following remarks

Remark 3.1 1If M is a Noetherian R —module
but not finitely presented,then Theorem 2 8(2) and
Corollary 2 9(2) will not hold. See Example 3. 1(5)
and Example 3. 2(2).

Remark 3. 2 So far, we can not find a coherent
ring R and a nonzero finitely presented mnon—
Noetherian R -module M and a maximal ideal m of R
satisfying pdeM = pdr Mn and w.gl. dimRn <,
but fdreM + m-codimrM < w.gl.dimR.. See
Example 3. 1(3), (4) and Example 3. 2(1). So we
have a question without the assumption "
Noetherian" does the Theorem 2. §(2) hold
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(L#% 96 Continue from page 96)
R'R= T diag (A, Ar, 0, ,0) T,
where T'= (&)  is a unite matrix, andA:1 > 0.
Since C = (aj)wn = T'R'RDR"RDT,G =
(gij)xn = T'RYERT are non-negative definite
matrices, thenci<< 0, gi== 0
Let F= diag(Ai,~+ A, 0,00 T"DT+ T'DT
diag(X1,--- A, 0,00+, 0),

we obtain f11 = 2\1(2 ClIitlflg).
=

Fromz fith = 1,di > 0,we have
1

fu+ cu+ gu> 0,
which is a contradiction to Formula (2 6).
SoR= 0,and4"< B.
Corollary 2. 8
definite matrices, if << B, A< B’ ,then AB= B A

Let 4,B be non-negative

Proof If A< B,A*< B’, then4"<< B ,s0AB
= BA.

3  Conclude

The relation between the minus partial ordering
of two matrices 4 and B relates to the B— H partial
ordering of theirs exponent 4 and B* (k= 2,3) are
given, But our method seems unavailable for the

general case, and we pose an open question.
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Question As a consequence of above

corollary, we conjecture

A< B, A< B'(k= 4= AB= BA.
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