A Classification of Quadratic Harmonic Morphisms Between Semi-Euclidean Spaces $R_r^3 \rightarrow R_s^2$

二次调和同态 $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ 的分类

Lu Weijun, Fang Lijing 卢卫君,方丽菁

(College of Computer and Information Science, Guangxi Univ. for Nationalities, Nanning, Guangxi, 530006, China)

(广西民族学院计算机与信息科学学院,广西南宁 530006)

Abstract In this paper, we study quadratic harmonic morphisms between semi-Euclidean spaces. We give a structure equation of such morphisms using their coefficient matrices analysis and special coordinates generalizing the results of Ou-Wood on quadratic harmonic morphisms between Euclidean spaces. As an application, we obtain a classification of quadratic harmonic morphisms $R^3 \rightarrow R^2$.

Key words semi-Euclidean spaces R^m , harmonic morphisms, quadratic harmonic morphisms. 摘要: 在给出半定欧氏空间之间二次调和同态的结构方程之后,通过对结构方程的系数矩阵的分析及特殊坐标系的运用,推广 Ou-W ood关于欧氏空间之间二次调和同态的结果,获得二次调和同态 $R^3 \rightarrow R^2$ 的分类.

关键词: 半欧氏空间 R;" 调和同态 二次调和同态

中图法分类号: 0186 12; 0189. 31 文献标识码: A

文章编号: 1005-9164(2005) 04-0268-05

Unless otherwise stated, all manifolds and maps involved in this paper are assumed to be smooth.

Definition 0. 1 A map $Q(M,g) \rightarrow (N,h)$ between two Riemannian manifolds is called a harmonic map if the divergence of its differential vanishes. Such maps are the critical points of the energy function

$$E_2(O,\Omega) = \frac{1}{2} \int_{\Omega} |dO|^2 dx$$

over compact domain Ω in M. For further detailed account on harmonic maps, we refer to References [1 ~ 3].

The function corresponding to the Euler-Lagrange equation is the tension fields, a system of semi-linear second order elliptic partial differential forms

收稿日期: 2005-08-10

作者简介: 卢卫君 (1968-) ,男 ,广西南宁人 ,硕士研究生 ,讲师 ,主要 从事现代微分几何研究。

$$f(O) = trace dO$$

In local coordinates, harmonic map equation takes the form

$$\begin{split} \vec{f}' &= \Delta_M \vec{O} + \sum_{T,U=1}^n g_x \left(\underbrace{\mathcal{N}}_{T} \vec{O}, \underbrace{\mathcal{N}}_{T} \vec{O} \right) \left(\begin{smallmatrix} N & Y & V \\ T & T & V \end{smallmatrix} \right) = \\ g^{ij} \left(\frac{\partial \vec{O}}{\partial_x^i \partial_{x'}^j} - \begin{smallmatrix} M & k \\ T & I \end{smallmatrix} \right) \frac{\partial \vec{O}}{\partial_x^k} + \begin{smallmatrix} N & V & \Delta \vec{O} \\ T & T & \Delta \vec{O} \end{smallmatrix} \right), \end{split}$$

where $M_{f_j}^k$ and $N_{f_j}^{V}$ are the Christoffel symbols of the Levi-Civita connections on (M,g) and (N,h). Ois called harmonic map if f(O) = 0.

Harmonic morphisms are defined as mappings between Riemannian manifolds which pull back (local) harmonic functions to (local) harmonic functions More precise is as follow:

Definition 0. 2 Let $Q(M,g) \rightarrow (N,h)$ be a mapping between Riemannian manifolds. Then Q is called a harmonic morphism if for any harmonic function $f: U \subseteq N \rightarrow R$ with $Q^{-1}(U)$ non-empty, its pull-back by $f \circ Q Q \cap (U) \subseteq M \rightarrow R$ is harmonic as well.

^{*} Supported by Guangxi Natural Science Fund (GNSF0007015) and Guangxi University for Nationalities Science Fund.

Definition 0. 3 A C^1 - map $O(M^n, g) \rightarrow (N^n, h)$ is called horizontally weak conformal map if, at each point $x \in M$, either $d^0 = 0$ or the linear map

$$d^{O}_{(kerd)}^{\perp}$$
: $(kerd^{O})^{\perp} \rightarrow T_{O(x)} N$

 H^{x} .

is conformal and surjective Let $V_x = \ker dQ$ and $H_x = (\ker dQ)^{\perp}$, then horizontally weak conformality can be written as

$$h(dQ(X), dQ(Y)) = \lambda^{2}(x)g(X, Y), \forall X, Y \in$$

We call λ the dilation of horizontally weak conformal map O. It is easily seen that in local coordinates $(x^i)_{i=1,2,\cdots,m}$ and $(y^T)_{=1,2,\cdots,n}$ around x and O(x), the horizontal weak conformality reads

$$g^{ij}(x) \frac{\partial^{i}}{\partial x^{i}}(x) \frac{\partial^{i}}{\partial x^{j}}(x) = \lambda^{2}(x) h^{TU}, \forall X, Y \in H^{x}.$$

It is well known that a mapping between Riemannian manifolds is a harmonic morphism if it is a horizontally weak conformal harmonic map^[4,5].

In 1996, Fuglede^[4] extended the above characterization to harmonic morphisms between semi-Riemannian manifolds. For an early study of harmonic morphism between semi-Riemannian manifolds see Reference [6].

Recall that a semi-Riemannian manifold^[7], the Laplace-Beltrami operator Δ_M is not elliptic in general, in local coordinates $(x^i)_{\models 1,2,\cdots,m}$ around $x \in M^n$, given by

$$\Delta_{M} = -\frac{1}{\left|g_{M}\right|} \sum_{i=1}^{m} \frac{\partial}{\partial x^{i}} \left(-\frac{1}{\left|g_{M}\right|} \sum_{j=1}^{m} g^{ij}_{M} \frac{\partial}{\partial x^{j}} \right),$$

where $g_M = det(g_{ij}^M)$, g_{ij}^M and g_{ij}^M being the covariant and the contra-variant components of the metric tensor g_M . A harmonic morphism between semi-Riemannian manifolds M, N is defined as a smooth map $M \rightarrow N$ which pulls back local harmonic functions on N into local harmonic functions on M. As in the Riemannian case, a harmonic morphism is the same as a smooth map which is harmonic and horizontally weakly conformal.

In this paper, we focus on the study of harmonic morphisms between semi-Euclidean spaces. We use R_r^m to denote the semi-Euclidean space which is R^m as manifolds and it is provided with the indefinite metric g_r^m given by

$$(g_{ij}) \equiv \left(egin{array}{ccc} -I_r & O \ O & I_{m-r} \end{array}
ight)$$

广西科学 2005年 11月 第 12卷第 4期

where (g_{ij}) denotes the component matrix of tensor g_r^m and I_r denotes the standard $r \times r$ identity matrix.

Definition 0. 4 A map $\bigcirc R^m \to R^n$ is called a quadratic map if all component functions of \bigcirc are homogeneous polynomials of degree $2 \text{ in } x_1, x_2, \cdots, x_m$. In this case, from the theory of quadratic functions and bi-linear forms we know that a quadratic map $\bigcirc R^m \to R^n$ can be always written as

$$O= (X^t A_1 X, X^t A_2 X, \cdots, X^t A_n X)$$

where X denotes the column vector in \mathbb{R}^n , X^i the transpose of X and the symmetric matrices A_i ($i = 1, 2, \dots, n$) are called the component matrices

Theorem 0. $\mathbf{1}^{[8]}$ A quadratic map $R^n \to R^n$ ($m \ge n$) (i. e. $R^0 \to R^0$) with $O(X) = (X^t A_1 X, X^t A_2 X, \dots, X^t A_n X)$

is a harmonic morphism if and only if (1)
$$tr A_i = 0, (i = 1, 2, \dots, n);$$

$$(2) A_i A_j + A_j A_i = O, (i, j = 1, 2, \dots, n, i \neq j);$$

$$(3) A_i^2 = A_j^2, (i, j = 1, 2, \dots, n).$$

The following characterization of harmonic morphisms was obtained in Reference [9].

Theorem 0. 2 For a map $\bigcirc U \subset \mathbb{R}^m \to \mathbb{R}^n$ between semi-Euclidean spaces with

$$O(x) = (O(x), O(x), \cdots, O(x)),$$

the harmonicity and horizontally weak conformality are equivalent to the following conditions respectively

$$-\sum_{i=1}^{r} \frac{\partial \mathcal{O}}{\partial x_{i}^{2}} + \sum_{i=r+1}^{m} \frac{\partial \mathcal{O}}{\partial x_{i}^{2}} = 0, \tag{0.1}$$

$$-\sum_{i=1}^{r} \frac{\partial \mathcal{O}}{\partial x_{i}} \frac{\partial \mathcal{O}}{\partial x_{i}} + \sum_{i=r+1}^{m} \frac{\partial \mathcal{O}}{\partial x_{i}} \frac{\partial \mathcal{O}}{\partial x_{i}} = \lambda^{2} XW_{U}, \quad (0.2)$$

where $T, U = 1, 2, \dots, n$; (x_1, x_2, \dots, x_m) are standard coordinates of R^m ; λ : $R^m \rightarrow R$ is the dilation of Q; and $C \rightarrow 1$ $C \rightarrow 1$

$$X = \begin{cases} -1, T = 1, 2, \dots, s \\ 1, T = s + 1, \dots, n. \end{cases}$$

1 Equations for quadratic Harmonic

Proposition 1. 1 Let $Q R_1^3 \rightarrow R_0^2$ be a quadratic harmonic morphism with

$$O(X) = (X^t AX, X^t BX),$$

then

(i)
$$tr A = 0$$
, $tr B = 0$,

where the trace is taken with respect to the metric g_r^m , for instance, $A = (a_i)$, then trace of A can be written as

$$trA = -\sum_{i=1}^{r} a_{ii} + \sum_{i=r+1}^{m} a_{ii}.$$

(ii)
$$AI_{1}^{3}B + BI_{1}^{3}A = O$$
,
where $I_{1}^{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$,
(iii) $AI_{1}^{3}A = BI_{1}^{3}B$.

Proof Using the expression of a harmonic morphism between semi-Euclidean spaces $\bigcirc R_1^3 \rightarrow R_0^2$ given by

$$Q(x_1, x_2, x_3) = (a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3, b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_3^2 + 2b_{12}x_1x_2 + 2b_{13}x_1x_3 + 2b_{23}x_2x_3),$$

$$O(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 + 2a_{12}x_1x_2 + 2a_{13}x_1x_3 + 2a_{23}x_2x_3,$$
 (1. 1)

$$O(x_1, x_2, x_3) = b_{11}x_1^2 + b_{22}x_2^2 + b_{33}x_3^2 +$$

$$2b_{12}x_{1}x_{2} + 2b_{13}x_{1}x_{3} + 2b_{23}x_{2}x_{3}, (1.2)$$

we can find out the equations of coefficients a_{ij} and b_{ij} (i, j = 1, 2, 3).

From Equation (0.1), we get
$$-\frac{\partial O}{\partial x_1^2} + \frac{\partial O}{\partial x_2^2} + \frac{\partial O}{\partial x_3^2} = 0,$$

$$-\frac{\partial O}{\partial x_1^2} + \frac{\partial O}{\partial x_2^2} + \frac{\partial O}{\partial x_3^2} = 0$$

and

$$-a_{11} + a_{22} + a_{33} = 0$$
, $-b_{11} + b_{22} + b_{33} = 0$, which implys that

$$trA = 0, trB = 0.$$

According to Equation (0. 2), we have
$$-\frac{\partial \mathcal{L}}{\partial x_1}\frac{\partial \mathcal{L}}{\partial x_2} + \frac{\partial \mathcal{L}}{\partial x_2}\frac{\partial \mathcal{L}}{\partial x_2} + \frac{\partial \mathcal{L}}{\partial x_3}\frac{\partial \mathcal{L}}{\partial x_3} = X\lambda^2, T = 1, 2.$$

 $-\frac{\partial \mathcal{J}}{\partial x_1}\frac{\partial \mathcal{J}}{\partial x_1} + \frac{\partial \mathcal{J}}{\partial x_2}\frac{\partial \mathcal{J}}{\partial x_2} + \frac{\partial \mathcal{J}}{\partial x_3}\frac{\partial \mathcal{J}}{\partial x_3} = 0, T, U = 1, 2,$

Substituting (1. 1) and (1. 2) into (1. 3), we have $(-a_{11}^2+a_{12}^2+a_{13}^2)x_1^2+(-a_{12}^2+a_{22}^2+a_{23}^2)x_2^2+$ $(-a_{13}^2 + a_{23}^2 + a_{33}^2)x_3^2 + 2(-a_{11}a_{12} + a_{12}a_{22} +$ $a_{13}a_{23}$) $x_1x_2+2(-a_{11}a_{13}+a_{12}a_{23}+a_{13}a_{33})x_1x_3+$

$$2(-a_{12}a_{13}+a_{22}a_{23}+a_{23}a_{33})x_2x_3=\frac{\lambda^2}{4},$$

expressed by matrix, we get

$$(x_1, x_2, x_3) \begin{bmatrix} -a_{11} & a_{12} & a_{13} \\ -a_{12} & a_{22} & a_{23} \\ -a_{13} & a_{23} & a_{33} \end{bmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} =$$

in the same way, we have

$$\frac{\lambda^2}{4}$$
,

therefore

$$AI_{1}^{3}A = BI_{1}^{3}B.$$

Expanding (1.4), we have

 $(-a_{11}b_{11}+a_{12}b_{12}+a_{13}b_{13})x_1^2+(-a_{12}b_{12}+$ $a^{22}b^{22} + a^{23}b^{23}$) $x^{\frac{2}{2}} + (-a^{13}b^{13} + a^{23}b^{23} + a^{33}b^{33})x^{\frac{2}{3}} +$ $2[(-a_{11}b_{12}+a_{12}b_{22}+a_{13}b_{23})+(-b_{11}a_{12}+$ $b_{12}a_{22} + b_{13}a_{23})]x_1x_2 + 2[(-a_{11}b_{13} + a_{12}b_{23} + a_{13}b_{33})]$ $+ (-b_{11}a_{13} + b_{12}a_{23} + b_{13}a_{33})]x_1x_3 +$ $2[(-a_{12}b_{13} + a_{22}b_{23} + a_{23}b_{33}) + (-b_{12}a_{13} + b_{22}a_{23} +$ $b_{23}a_{33}$) $|x_2x_3| = 0$,

which implies that
$$(x_1, x_2, x_3) \begin{vmatrix} -a_{11} & a_{12} & a_{13} \\ -a_{12} & a_{22} & a_{23} \\ -a_{13} & a_{23} & a_{33} \end{vmatrix} \begin{pmatrix} b_{11} & b_{12} & b_{13} \\ b_{12} & b_{22} & b_{23} \\ b_{13} & b_{23} & b_{33} \end{vmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} =$$

$$(x_1, x_2, x_3) A I_1^3 B \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = 0.$$

Noting that AI_1^3B is not symmetric in general, we conclude that

$$AI_1^3B + BI_1^3A = O.$$

Thus we end the proof of the lemma.

In a similar way, we can obtain more general results in the following

Proposition 1. 2 Let $Q: R_r^m \to R_s^n (m \ge n)$ be a quadratic map given by

$$O(X) = (X^t A_1 X, X^t A_2 X, \cdots, X^t A_n X),$$

then Ois a harmonic morphism if and only if

(1) $trA_i = 0, (i = 1, 2, \dots, n),$

where trace of
$$A_i$$
 is taken with respect to the metric g_r^m ,

(2) $A_i I_r^m A_i + A_i I_r^m A_i = O, (i, j = 1, 2, \dots, n; i \neq 1, 2, \dots, n; i$

$$(3) \times A_i I_r^m A_i = \times A_j I_r^m A_j, (i, j = 1, 2, \dots, n).$$

for
$$i, j = 1, 2, \dots, n$$
, where
$$I_r^m = \begin{pmatrix} -I_r & O \\ O & I_{m-r} \end{pmatrix}.$$
Example 1. $\mathbf{1}^{[9]}$ Let $Q R_2^4 \rightarrow R_2^3$ by

$$O(x^{1}, x^{2}, x^{3}, x^{4}) = (2x^{1}x^{3} - 2x^{2}x^{4}, 2x^{1}x^{4} + 2x^{2}x^{3}, (x^{1})^{2} + (x^{2})^{2} + (x^{3})^{2} + (x^{4})^{2}),$$

then O is a harmonic morphism defined by homogeneous polynomial of degree 2 with dilation

In this example, it is well known that

Guangxi Sciences, Vol. 12 No. 4, November 2005

$$A_{1} = \begin{cases} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{cases},$$

By a routine computation, we can easily get

$$tr A_{1} = 0, tr A_{2} = 0, tr A_{3} = 0.$$

$$A_{1}I_{2}^{4}A_{2} + A_{2}I_{2}^{4}A_{1} = O,$$

$$A_{1}I_{2}^{4}A_{3} + A_{3}I_{2}^{4}A_{1} = O,$$

$$A_{2}I_{2}^{4}A_{3} + A_{3}I_{2}^{4}A_{2} = O,$$

$$XA_{1}I_{2}^{4}A_{3} + XA_{2}I_{2}^{4}A_{2} = O,$$

$$XA_{1}I_{2}^{4}A_{1} = XA_{2}I_{2}^{4}A_{2},$$

$$XA_{1}I_{2}^{4}A_{1} = XA_{3}I_{2}^{4}A_{3},$$

$$XA_{1}I_{2}^{4}A_{2} = XA_{3}I_{2}^{4}A_{3}, \text{ where } X = -1, X = -1, X$$

2 Some classifications of quadratic harmonic morphism $\phi: R^3 \rightarrow R^2$

Proposition 2. 1 Let $Q R^3 \rightarrow R^0$ be a quadratic harmonic morphism, then, up to an isometry of R^3 , Q is the composition of an orthogonal projection

$$C: R^3 \to R^2_0, \Omega(x_1, x_2, x_3) = (0, x_2, x_3),$$

followed by a quadratic harmonic morphism $Q: R_0^2 \rightarrow R_0^2$.

Proof Let $O(X) = (X^t AX, X^t BX)$. After a suitable choice of orthogonal coordinates in \mathbb{R}^3 is done, A takes the diagonal form

$$A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix},$$

where $\lambda_1^2 + \lambda_2^2 + \lambda_3^2 \neq 0$

Using Equations (i), (ii) and (iii) of Proposition 1. 1, we have

$$\begin{pmatrix}
-2\lambda_{1}b_{11} & (-\lambda_{1} + \lambda_{2})b_{12} & (-\lambda_{1} + \lambda_{3})b_{13} \\
(-\lambda_{1} + \lambda_{2})b_{12} & 2\lambda_{2}b_{22} & (\lambda_{2} + \lambda_{3})b_{23} \\
(-\lambda_{1} + \lambda_{3})b_{13} & (\lambda_{2} + \lambda_{3})b_{23} & 2\lambda_{3}b_{33}
\end{pmatrix}$$

 $-\lambda_1 + \lambda_2 + \lambda_3 = 0$, $-b_{11} + b_{22} + b_{33} = 0$,

= O, (2.2)

$$\begin{pmatrix}
-\lambda_1^2 & 0 & 0 \\
0 & \lambda_2^2 & 0 \\
0 & 0 & \lambda_3^2
\end{pmatrix} = \begin{pmatrix}
-b_{11} & b_{12} & b_{13} \\
-b_{12} & b_{22} & b_{23} \\
-b_{13} & b_{23} & b_{33}
\end{pmatrix} \begin{pmatrix}
b_{11} & b_{12} & b_{13} \\
b_{12} & b_{22} & b_{23} \\
b_{13} & b_{23} & b_{33}
\end{pmatrix} .$$
(2. 3)

It is easy to check that none of the following cases is held

$$(i)\lambda_1\lambda_2\lambda_3 \neq 0,$$

 $(ii)\lambda_i^2 + \lambda_j^2 = 0, i \neq j, i, j = 1, 2, 3,$

 $(iii)\lambda_2 = 0$ but $\lambda_1\lambda_3 \neq 0$, or $\lambda_3 = 0$ but $\lambda_1\lambda_2 \neq 0$. Consider the case $\lambda_1 = 0, \lambda_2 \neq 0, \lambda_3 \neq 0$. From (2. 1) we get

$$\lambda_{2} + \lambda_{3} = 0$$
, $-\lambda_{1} + \lambda_{2} \neq 0$, $-\lambda_{1} + \lambda_{3} \neq 0$.
Let $\lambda_{2} = \lambda_{1}, \lambda_{3} = -\lambda_{1}$, from (2.2), it follows that $b_{12} = b_{13} = b_{22} = b_{33} = 0$.

Combining (2.3) we see that

$$b^{11} = 0.$$

Thus,

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & b_{23} \\ 0 & b_{23} & 0 \end{pmatrix}.$$

Again from (2.3) it follows that

$$b^{23} = \pm \lambda$$
.

Therefore, we obtain $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & -\lambda \end{pmatrix}, B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \pm \lambda \\ 0 & \pm \lambda & 0 \end{pmatrix}.$

This means that $\overset{\circ}{O}$ is the composition $\overset{\circ}{O}$ of $\overset{\circ}{C}$ and $\overset{\circ}{O}$. Thus we obtain Proposition 2. 1.

In a similar way, for such as $Q R_0^3 \rightarrow R_0^2$, $Q R_2^3 \rightarrow R_0^2$, $Q R_2^3 \rightarrow R_0^2$, $Q R_2^3 \rightarrow R_0^2$, we have the same conclusion

Proposition 2. 2 Any quadratic harmonic morphisms between semi-Euclidean spaces $Q : R_1^3 \rightarrow R_1^2$ is, up to an isometry of R^3 , the composition of an orthogonal projection $C: R_1^3 \rightarrow R_1^2$ followed by a quadratic harmonic morphism $Q: R_1^2 \rightarrow R_1^2$.

Proof Let $\mathcal{Q}(X) = (X'AX, X'BX)$. According to Proposition 1. 2, we have

$$1) tr A = 0, tr B = 0,$$

$$2)AI_{1}^{3}B + BI_{1}^{3}A = O,$$

3) -
$$AI_{1}^{3}A = BI_{1}^{3}B$$
.

We can choose a suitable coordinates, such that A

can be written

$$A = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix},$$

A direct checking shows that the following cases are impossible

$$(i)\lambda_1\lambda_2\lambda_3\neq 0,$$

$$(ii)\lambda_1 = 0 \text{ but } \lambda_2\lambda_3 \neq 0,$$

$$(iii)\lambda_i^2 + \lambda_j^2 = 0, i \neq j.$$

Then we are left with the case that $\lambda_3 = 0$, but $\lambda_1 \lambda_2 \neq 0$ (or $\lambda_2 = 0$ but $\lambda_1 \lambda_3 \neq 0$).

By 1) we have

$$\lambda_1 = \lambda_2 = \not \models 0, -\lambda_1 + \lambda_3 \not \models 0, \lambda_2 + \lambda_3 \not \models 0.$$

By 2) we get

$$b_{11} = b_{13} = b_{22} = b_{23} = 0.$$

Using 1) again we deduce that

$$b_{33} = 0.$$

From 3) it follows that

$$b^{12} = \pm \lambda$$
.

Thus, we have

In the late
$$A = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & 0 \end{pmatrix}, B = \begin{pmatrix} 0 & \pm \lambda & 0 \\ \pm \lambda & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

It follows that $Q \circ C$ with being orthogonal

projection defined by $C(x_1, x_2, x_3) = (x_1, x_2, 0)$ and Qbeing an quadratic harmonic morphism.

Similarly, for $Q R_2^3 \rightarrow R_1^2$, as long as we take the orthogonal projection as $\stackrel{C}{:} R_2^3 \rightarrow R_1^2$, defined by $\stackrel{C}{:} (x_1,$ $(x_2,x_3) = (0,x_2,x_3)$, we can get the same result as Proposition 2. 2.

The above results can be summarized as follows

Theorem 2. 1 Let $Q R_r^3 \rightarrow R_s^2$ be a quadratic harmonic morphism, then, up to an isometry of R^3 , Ois the composition of an orthogonal projection $\stackrel{c}{\cdot}: R_r^3 \longrightarrow R_t^2$ (either t = r or t = r - 1) followed by a quadratic harmonic morphism $Q: R_t^2 \rightarrow R_s^2$.

In the process of proof, we can describe the forms of these quadratic harmonic morphisms.

Theorem (2. 1)' Suppose that $Q: \mathbb{R}^3 \to \mathbb{R}^2$ is a quadratic harmonic morphism with

$$Q(X) = (X^t A X, X^t B X).$$

(i) If r+s is even, then with respect to suitable coordinates in R^3 , Oassumes the normal form

$$Q(X) = \begin{pmatrix} X & 0 & 0 \\ 0 & X & 0 \\ 0 & 0 & 0 \end{pmatrix} X, X \begin{pmatrix} 0 & \pm \lambda & 0 \\ \pm \lambda & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} X$$

where λ is the positive eigenvalue of A; $\dot{X} = +1$ or - 1, which satisfies $\dot{X}X + \dot{X}X = 0$, where \dot{X} as previous stated.

(ii) If r + s is odd, then with respect to suitable coordinates in R^3 , Oassumes the normal form

$$Q(X) = \begin{pmatrix} X & 0 & 0 & 0 \\ 0 & X\lambda & 0 & 0 \\ 0 & 0 & X\lambda \end{pmatrix} X, X \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \pm \lambda \\ 0 & \pm \lambda & 0 \end{pmatrix} X,$$

where X = + 1 or - 1, which satisfies XX + XX

Remark 2. 1 Since it is restricted by the condition (3) in Proposition 1. 2, if r = 0 and s = 1 (or r = 3 and s = 1) then mapping $\bigcirc R^3 \longrightarrow R^2$ is no long er an quadratic harmonic morphism. Of course, these cases are excluded in Theorem 2. 1.

Acknowl edgement

The author indeed expresses his appreciation to Professor Ye-Lin Ou for his consistent help and valuable suggestions on the subject of this paper.

References

- [1] Eells J, Lemaire L A report on harmonic maps [J]. Bull London Math Soc, 1978, (10): 1-68.
- [2] Eells J, Lemaire L. Selected Topics in Harmonic Maps [C]. CBMB Regional Conf Ser in Math, Vol 50. Amer Math Soc, Providence, R I, 1983.
- [3] Eells J, Lemaire L. Another report on harmonic maps [J]. Bull London Math Soc, 1988, (20): 385-524.
- [4] Fuglede B. Harmonic morphism between semi-Riemannian manifolds[J]. Ann Acad Sci Fennicae, 1996, (21): 31-50.
- [5] Ishihara T. A mapping of Riemannian manifolds which preserves harmonic functions [J]. J Math Kyoto Univ, 1979, (19): 215-229.
- [6] Parmar V K. Harmonic morphism between semi-Riemannian manifolds [D]. (Ph S theses). University of Leeds, England, 1991.
- [7] O Neill B. Semi-Riemannian Geometry: With Applications to Relativity [M]. New York: Academic Press, 1983.
- [8] Ou Y L, Wood J C. On the classification of harmonic morphisms between Euclidean spaces [J]. Algebra, Groups and Geometries, 1996, (13): 41-53.
- [9] Lu Weijun. Some results on harmonic morphisms between semi-Euclidean spaces [J]. Guangxi Sciences, 2001, 8(4): 266-270.

(责任编辑: 蒋汉明 韦廷宗)