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Abstract A new nonlinear conjugate gradient formula for solving unconstrained optimization

problem is proposed. The formula satisfies the sufficient descent condition, and the method in which

the proposed formula and the weak Wolfe conditions are used is global convergence. Preliminary

numerical results show that the method is promising.
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1 Introduction

The nonlinear conjugate gradient ( CG) method is
quite suitable for solving large— scale unconstrained
optimization problem

min{f(x)l x€ R'}, (1 1)
where f: /P> JPis a twice continuously differentiable
function whose gradientis denoted by & 72> 7%, due
to its simplicity and low memory requirement. lts
iterative formulais given by
(L2

where # is a step size which is computed by carrying

X 1= Xk+ fedk,

out a line search, and di is the search direction defined

by
p - g, it k=1, (13
T - g+ Uder, if k= 2, '
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where U is a scalar and g« denotes g(xx). There are at
least six well— knowm formulae for U , which are

given below
Us = }ZA*T (gk — gk-1)

(gv — ge-1) di-1” (1.4)
T
Ut o A8 (L.5)
G- 1Qk- 1
T
eSS = Sl (1. 6)
k- 1k 1
T
| QLI —--L
dkT-lgk-l’ (1.7)
T
s_ (g = ge
W= dioigie1 (1.3)
T
Y gk gk
T (g - ge-1) dien” (1.9)

To establish the global convergence results of the
above CG methods, the step size # is usually required
to satisly some line search conditions, such as the
weak Wolfe line search

f(xe+ tedi) — f (xi )< Wagi dr,

g(xi+ tedi) di= gl di,

where WE (0, _é) and €€ W, 1), and the strong

(1. 10)
(1. 11)
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Wolfe line search (1. 10) and

| g(xk+ tede) il < — gl i, (1. 12

where W& (0,_5) and & (Wl)

Considerable attentions have been made on the
global convergence behaviors for the above methods
Zoutendijkm proved that the FR method with exact
line search is globally convergent. Al-Baali®”! extented
this result to the strong Wolfe line search conditions
In Reference [3 ], Dai and Yuan proposed the DY
method which produces a descent search direction at
every iteration and converges globally provided that
the line search satisfies the weak Wolfe conditions
been

However, the global convergence has not

established for the PRP method with the strong Wolfe
line search conditions.

Under the sufficient descent condition

g d - cllgll, (1.13)
for some constantc> 0, Gilbert and Nocedal*'was in
another way to discuss the global convergence of the
PRP method with the weak Wolfe line search. In
Reference [4 ], the parameter U in (1. 6) is not
allowed to be negative, that is

U = max{0,U"")}. (1. 14)

By using a complicated line search, Gilbert and
Nocedal'was able to establish the global convergence
result of the PRP and the HS methods by restricting
the scalar U to be nonnegative.

In this paper, we present our new CG formula and
its properties in section 2, the global convergence result
of this new method in section 3, preliminary numerical

results in section 4, and conclusion in the last section.

2 New conjugate gradient formula and its
property

The sufficient descent condition ( 1. 13) is an
important property in the literature of analyzng the
global convergence of the CG methods, so we intend
to find al such that d satisfies the condition( 1. 13).
In the following, we propose a U and prove that it has
such property.

A definition of a descent sequence (or a sufficient
descent sequence)is given below. A sequence {U} is
called a descent sequence (or a sufficient descent

sequence ) for the CG methods if there exists a
A 2005 11 % 128% 44

constant € (0, 1) (or f€ [0, 1)) such that for allk
= 2,

Ugl die =< Allge 1P (2. 1)

In Reference [5], the authors proposed a variation

of the FR formula (V FR):

FR _ 1||,Q'k||2
U= B gkrdk—l| +  sllgi il
where 1€ (020), 2€ [+ X, + ), :€ (0,

+ ©9) and X is an any given positive constant. In

P (2.2

Reference [6 ], the authors designed the following
variation of the PRP formula
uree _ 1(||Qk||2— ‘ nggk—l‘ )

T
olglael + sllgel
where the definitions of 1, 2, 3 are as same as those

EE (2.3

given in the formula (2 2). In order to ensure the

nonnegative of the parameter U, it is defined that
U™ = max{0, U™y}, (2. 4)
It is easy to prove that {'"} and ("™} all are

descent sequence (with f= _; ). Further the formulae
(2 2) and (2. 4) makedr possess the sufficient descent
property-

Enlightened by the above ideas, w e propose a new
U as follows

e
A 1||gk||2+ (1— )\) 1(||gk||2 - ‘,legk- 1‘ )

_2‘ gt di- i+ Cillgieall?

whereA €

same as those in the formula (2. 2). In order to ensure

. (2.9

(0, 1) and the definitions of 1, 2 are as

the nonnegative of the parameter U, we define

U = max {0, ™), (2. 6)
thus if a negative of U occurs, this strategy will
restart the iteration along the steepest direction.

The following two propositions show that the
{U:‘PRR } is a descent sequence, and so that de satisfies
the sufficient descent condition (1. 13).

Proposition 2. 1  Suppose that U is defined by
the formulae(2. 5) and (2. 6), then we have that

[:E\‘PRH< é ||gk||2

< Teld 1 (27

S 1
where 0 < €= —2 < L

Proof 1t is clear that the inequality (2. 7) holds
WheanRH — O.

. PRB PRP
Now we consider the case where (X = Q"

So we have
U _
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Allg P+ (1= 2) i (lexlP = | of o |‘)
ol gldicl + illgea IP

P
A allgill+ (Tl— A) 1||,<zk||<
ol gldi- |

2 o gl

|g/€dk— 1

L gl
ol gldie | T

HenceU"™

PRP+ . .
Furthermore {8 } is a descent sequence without

can make the inequality (2 7) hold.

any line search.

Proposition 2. 2 Suppose that U is defined by
the formulae (2 5) and (2 6), then dr satisfies the
sufficient descent condition( 1. 13) for alle= 1, where
c= (1- _—;).

Proof For anyk > 1, suppose that ng- 1di-1 <

0.
Q™ = 0, thendi = — gr. Sowehave
gdi= - llglP< - cllgl,

wherec= (1- _1)

2
Otherwise, from the definition of "™ and
Proposition 2. 1, we can obtain
gidi= gl [- g+
A 1||gk||2+ (1= Q) 1(||gk||2 - Lnggkf 1 )

_2‘ ngdk— i+ llgi ol
de-r K< - P+
Alle P+ (1= X)) ((HlalP = | gl g1l ) )
( A gldiel + llgeIP )
T > 1 ||g/c||
<< -
| gk die- 1| < llgr II” + _2|gkdk “gk 1| <<
- (1= gl =~ digdl.
For ngdl = - ”ngz, we can deduce that dr has

the sufficientdescent condition ( 1. 13) for allk= 1.
3 Algorithm and global convergence

Assumption A The level set
Q= {x€ RIf(x)=< f(x1))
is bounded.

Assumption B The gradient g(x) is Lipschitz
continuous, i. e, there exists a constant L > Osuch that
for any x,y€ Q|

lg(x) - g(y)I< Lllx - yll.

Now we give the algorithn

Algorithm 3. 1

Step Q Givenx € R, setdi=
= 0, then stop

Step I Find a & > O satisfying the weak Wolfe

278

- gi k= 1 Ifg

g(xw 1).

conditions (1. 10) and (1. 11).
Step 2 LetXxw 1= Xk+ &de andg@w 1=

Ifllgi 1l = 0, then stop.
Step 3 ComputeUri'TP+ by the formulae (2. 5)

and (2 6). Then generatede 1 by the condition( 1. 3).
Step 4 Setk =: k+

Since {f (xx)} is a decreasing sequence, it is clear

L, go to step L

that the sequence {Xt} is contained inQ, and there
exists a constantfk , such that
fim £ (v)= £
By using the Assumptions A and B, we can
deduce that there exists M > Osuch that
gl M.V x€ Q. (3.2
The follow ing important result was obtained by

(3. 1)

ZoutendijkllJ and Wolfe"*'.
Lemma 3. 1  Suppose that f(x) is bounded
below, and g(x) satisfies the Lipschitz condition.

Consider any iteration method of the form (1. 2),
where di satisfies di g < 0 and t is obtained by the
weak Wolf line search. Then
N (gd)’
= all?

The following lemma was obtained by Dai and
9]

<+ oo, (3.3)

Yuan
Lemma 3. 2 Assumption that a positive series

{ai} satisfies the following inequality for allk

Zjlag lk+ e, (3. 4)
Whereil > 0 andc are constants. Then we have

2 %2 =+ oo, (3.5)
and 2 =+ 0 (3. 6)

Theorem 3. 1  Suppose that Assumptions A and
B hold,

3. 1,then we have

{xk} is a sequence generated by Algorithm

]igﬁjnf“gkﬂ =0 (3.7
holds.
Proof The condition( 1. 3) indicates that for all
k=2,
di+ ge = Udi-1. (3.8
Squaring both sides of Formula( 3. 8), we obtain
laell* = = llgill® = 2gfde+ Gillde- 1P, (3.9)
Suppose that g = gt i Formula( 2 6).
Then we have
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dill* = - ||gk||2 - ngrdk+
(U Vg 1P = = NP - 2efdi+
(?\ e P+ (1= 2) 1 (lalP = | of g il ))2_

_2‘ gkrdk—1| + allge 1P
llZi- 1|
2 2 7 "
N1 II'<< = Mgl = 2gedi+ gkl ||gk-1||4’
that is
2V
W e — T+ 3, (3. 10)
I gl I gxll
T
where hx = Hdk”4 andVi= — 'gk—dkz
Il g I gl
Note thathi= F}”z and Vi= 1 ,itfollows Form
(3. 10) that
k
hk< - 2 |2+ Z ||2 (3 11)

||g,
Suppose that the conclusmn (3.7) is not held.
Then, there exists a positive scalar Xsuch that for all k
= 1,
llgdl= X (3. 12)
Thus,it follows Forms (3. 2) and (3. 12) that

k
kL 23|y
it e |V

IS (3.13)
Further, we have
k
72(2 V. (3. 14)
=

On the other hand, usinghk} 0, the relation (3.
13) 1mp]1€% that

Y
Usmg Lemmas 3.2 and (3. 14) ,it follows that

PR TED I ERE (316

which contradicts to the Zoutendijk condition (3. 3).
This shows that (3. 7) holds, and the proof of this

theorem is complete.

(3. 15)

From the proof of the above theorem, we can
conclude that any conjugategradient method with the
formula U™

ensure the Zoutendijk condition ( 3. 3) holdsis globally

and some step size techniques which

convergent. In particular, the formula ™" with the
strong Wolfe conditions can generate a globally

comv ergent method.
4 Numerical resul ts

PRPSWP  the PRP formula with the strong
Wolfe conditions, whereW= 0. 01,€= 0. 1.

PRP SWP the PRP formula with the strong
S A 2005 118 #1228 % 4

Wolfe conditions, whereW=0.01,€= 0. 1.
NPRP SWP the new CG formula U™
in this paper with the strong Wolfe conditions, where W
= 00,%= 0.1,A= 0.3, 1= 1, 2= 3
NPRF WWP the new CG formula ™"
in this paper with the weak Wolfe conditions, where W
= 001,= 0.1,A= 0.3, 1= 1, 2= 3.

Further, the results of the performed comparison

given

" given

with the original PRP method are given. The problems
that we tested are from Reference [10]. For each
tested problem, the termination condition is

g (xe)I< 1077,

Table 1

the columns have the following meanings

shows the computation results, where

Problent the name of the test problem in
M ATLAB;

Dint the dimension of the problem;

N1 the number of iterations;

N E the number of function evaluations;

NG the number of gradient evaluations.

In order to rank the iterative numerical methods,
we compute the total numbers of function and gradient
evaluations by the following formula

Nwa = NF+ m* NG, (4. 1)
where m is an integer- According to the results on

automatic differentiation''*""

I the value of m can be set
tom = 5.

Since the PRPSWP method is one of the
commonly efficient CG methods, we compare the
PRP SWP, the NVPRP SWP and the NV PRP
WW P methods with the PRPSW P method as follows
for each tested examplei, compute the total numbers

of function evaluations and gradient evaluations

required by the evaluated methodj (EM(j)) and the
PRPSW P method by the formula (4. 1), and denote
them by NwuLi (EM(j)) and Nwali (PRPSW P); then

calculate the ratio

Nmta,i EM j
PEM()) = 3 PR

N wouli ( PRPSW P)
If EM(jo) does not work for example i, we

(4.2)

replace theri, (EM(jo) ) by a positive constant {which

is defined as follows

f= max{7n(EM(j)): (le)6§ St}
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Table 1 Test results for the PRPSWP, PRP SWP, NPRP SWP,NPRP WWP

PRPSW P PRP SWP NPRP SWP NPRP WWP

Problem Dim NI/NF/NG NI/NF/NG NI/NF/N G NI/NF/NG
ROSE 2 29/502/65 22/394/60 28/318/67 28/355/59
FROTH 2 12/30/20 10/28/20 13/83/25 28/57/41
BADSCP 2 - 41/509/100 34/324/100 55/268/98
BADSCB 2 13/80/22 11/123/22 16/82/25 19/86/29
BEALE 2 9/126/21 9/173/20 20/96/36 19/44/31
JENSAM 2 - - 11/172/18 13/30/18
HELIX 3 49/255/83 32/265/55 42/283 /66 34/81/53
BARD 3 23/98/37 27/152/43 17/134/28 53/98/74
GAUSS 3 4/5716 4/5716 3/7/4 3/7/4
M EYER 3 - - _ 3/7/4
GULF 3 1/2/2 1/2/2 1/2/2 17272
BOX 3 - - - -
SING 4 199/611/338 49/155/79 27/351/44 27/351/44
WOOD 4 169/1103/302 101/549/195 56/128 /95 85/223/132
KOWOSB 4 55/300/94 51/249/79 16/282/25 16/282/25
BD 4 - - - -
0SB 5 - - - -
BIGGS 6 264 /875 /423 - 43/486 /244 43/486 /244
0SB 11 254/1061/418 250/1011/412 - 476/1279/644
W AT SON 20 2795/7733 /4425 2143/5780/3396 1523/3836/2394 1513/3351/2233
ROSEX 8 23/402/59 25/371/62 3273291772 34/88/59

50 31/533/77 241492 /60 32/324/62 38/186/68

100 28 /337174 35/514/101 25/401/63 25/186/63
SIN GX 4 199/611/338 49/155/79 56/128 /95 56/128/95
PEN;, 2 5/18/12 6/20/14 5/18/12 5/18/12
PEN- 4 12/134 /28 12/136/27 10/81/25 11/75/18

50 613 /2795 /1063 136/898 /282 129/824 /252 129/364/227
V ARDIM 2 3/9/7 3/9/7 3/9/7 39177

50 10/52/36 10/52/36 10/52/36 10/52/36
TRIG 3 12/81/24 14/131/25 13/228 /26 16/182/22

50 41/279172 41/230/72 39/372/71 41/167/52

100 46 /342 /87 46/341/85 63/352/110 63/204 /86
BV 3 12/25/16 12/25/16 8/17/11 8/17/11

10 75712417117 75712417117 158/533/254 177/335/233
1E 3 571277 571277 5/12/7 5/12/7

50 6/13/7 5/11/6 5/11/6 5/11/6

100 6/13/8 6/13/8 6/13/8 6/13/8

200 6/13/8 6/13/8 6/13/8 6/12/7

500 6/13/8 6/13/8 6/13/8 6/13/8
TRID 3 10/75/16 13/33/19 13/77/17 18/35/19

50 26/55/31 26/55/31 28/58/35 26/51/29

100 30/67/36 30/67/36 31/68/38 29/63/34

200 30/66/36 30/66/36 30/66/39 29/58/33
BAND 3 9/68/13 10/23/17 7164712 7/17/10

50 18/183/24 16/331/25 16/184/23 177182722

100 18/183/24 16/373/26 1771375127 207142727

200 19/283/27 17/340/27 17/147 125 1773271722
LIN 2 1/3/3 1/3/3 1/3/3 1/3/3

50 1/3/3 1/3/3 1/3/3 1/3/3

500 1/3/3 1/3/3 1/3/3 1/3/3

1000 1/3/3 1/3/3 1/3/3 1/3/3
LIN, 2 1/51/2 1/51/2 1/51/2 1/51/2

10 1/3/3 1/3/3 1/3/3 1/73/3
LIN2 4 1/3/3 1/3/3 1/3/3 1/3/3

where The geometric mean of these ratios for method

Si= {(i,j) methodj does not work for example

il
280

EM (j) over all the test problemsis defined by
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rEM ()= ] rEMG)N"S.

where S denotes the set of the test problems and | Sl is

(4 3)

the number of elements in S. One advantage of the
above rule is that, the comparison is relative and hence
does not to be dominated by a few problems for which
the method

evaluations and gradient functions

requires a great deal of function

According to the above rules,it is clear that
r (PRPSW P)= 1. The values of r (PRP SWP),
r (NPRP SWP) andr (NPRP WWP) are listed in
Table 2. As we can see from Table 2, the new method
is much better than the PRP method.
Table 2 Relative efficiency of PRPSWP, PRP SWP, NPRP
SWP,NPRP WWP

NPRP SWP NPRP WWP
0. 7725

PRPSW P PRP SWP
1 0. 9049

0. 8526

5 Conclusion

By the combination of the variation of the
formulae U™ and U™ ,we have found the new formula
possesses the following features (1) {Umm } is a
descent sequence without any line search; (2)the new
method possesses the sufficient descent property and
comverge globally; (3) the strategy will restart the
iteration automatically along the steepest descent
direction if a negative value of U™ occurs (4) the
initial numerical results are promising.
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