广西科学 Guangxi Sciences 2005, 12(4): 292~ 294, 299

MR智能基础隔震结构的抗震分析

Seismic Response Analysis of Intelligent Base-Isolated Structure with MR Damper

麦庆元 ,韦树英 Mai Qingyuan, Wei Shuying

(广西大学土木建筑学院,广西南宁 530004)

(Institute of Civil Engineering, Guangxi University, Nanning, Guangxi, 530004, China)

摘要:为研究 M R智能基础隔震结构的抗震性能,应用双线性恢复力模型来描述基础橡胶隔震垫的弹塑性特性, 通过模糊半主动控制策略计算 M R阻尼器的控制力,建立该混合控制结构的数学模型,并对某 M R智能基础隔 震的框架结构进行地震作用下的时程反应分析.仿真分析表明: M R智能基础隔震系统不仅能够减小上部结构 的地震反应,而且还能够有效地保护基础隔震系统免于因过大变形而产生失效破坏,说明 M R智能基础隔震结 构是一种性能优异的智能控制系统.

关键词:基础隔震结构 MR阻尼器 抗震分析 模糊半主动控制 地震反应

中图法分类号: TU 352 12; TU 311.3 文献标识码: A 文章编号: 1005-9164(2005) 04-0292-03

Abstract The performance of intelligent base-isolated structure with M R damper for suppressing the seismic response is studied. The numerical model of the hybrid control system is established. The bilinear hysteretic model is applied to simulate the hysteretic characteristics of the rubber bearing isolation cushion. The fuzzy semi-active control strategy is employed to calculate the force of the M R damper. Simulated analysis demonstrates that the M R intelligent base-isolated system can not only significantly reduce the earthquake response of upper structure, but also protect the deformation of base-isolated system from damage. Intelligent base-isolated system becomes a practical and useful control system.

Key words base-isolated struture, magnetorheological fluid damper, response analysis, fuzzy semiactive control, earthquake response

基础隔震主要通过设置于建筑物底部与基础顶 面之间的叠层橡胶隔震垫,吸收并耗散地震能量,减 少地震波向上部结构传递,从而降低建筑物的地震反 应^[1].但是,基础隔震系统在高层建筑中只能部分地 减少地震能量向结构的输入,隔震层的过度变形可能 会造成隔震层的破坏.如果在结构上安装一些控制装 置,采用混合控制的方式可以较小的控制力获得较好 的控制效果.MR(magnetorheological fluid)阻尼器是 一种性能非常优越的可调智能阻尼器^[2,3].MR阻尼 器通过调节磁场强度可迅速地改变 MR液的阻尼特 性,从而调节控制力.本文研究 MR智能基础隔震结 构的抗震性能,应用双线性恢复力模型描述基础橡胶 隔震垫的弹塑性特性,运用模糊半主动控制策略计算 MR阻尼器的控制力,建立该结构的数学模型,并针 对某 MR智能基础隔震的框架结构进行地震作用下 的时程反应分析,对该 MR智能隔震系统的抗震性 能作出评价.

1 叠层橡胶隔震层的双线性恢复力模型^[1]

在地震荷载作用下,可用双线性恢复力模型简化 柔性隔震层的弹塑性特性,双线性恢复力模型如图1 所示.

收稿日期: 2005-07-07

- 修回日期: 2005-10-11
- 作者简介: 麦庆元 (1977-), 女, 广西南宁人, 讲师, 主要从事结构振动 控制研究
 - 292

图 1 双线性恢复力模型

Fig. 1 The bilinear hysteretic model k_{bi} 隔震层屈服前的水平刚度, k_{b2} 屈服后的水平刚度; W:隔震层的屈服位移;W:隔震层运动速度由正到负或由负到 正对应于 $x_b = 0$ 的弹塑性变形.

 k_{b1} : The horizontal stiffness of the base-isolate cushion before yielding; k_{b2} : The horizontal stiffness of the base-isolate cushion after yielding; W_{2} : the yielding displacement of baseisolate cushion; W_{2} : The hysteretic transformation according to $\dot{x}_{b} = 0$ when the velocity of base-isolate cushion is from positive to negative or from negative to positive

2 MR阻尼器的力学模型

目前,国际上普遍采用 Bingham 塑性模型^[2,3]来 描述 MR液在稳态条件下的流变学本构关系,可表述 为:

$$f = Z_0 V_+ \quad f_y \operatorname{sgn}(V), \tag{1}$$

其中, ^f为剪应力; ^V为剪切应变速率; ^Z为表观粘度, 一般不随场强而变化; ^f, 为剪切屈服应力, 与外加磁 场强度成正比. M R阻尼器在外力作用下, 阻尼器中 的活塞只有克服了 M R液的剪切屈服应力, 使其产生 塑性流动, 才能在缸体中运动.因此,只要调整磁场强 度, 就可以调整阻尼器中阻尼力的大小. M R阻尼器 的阻尼力由粘滞项和可控库仑力项组成:

$$F_d(t) = C_d x_d(t) + f_d \operatorname{sgn}[x_d(t)], \qquad (2)$$

其中, $F_{d}(t)$ 为阻尼器的阻尼力; C_{d} 为粘滞系数; f_{d} 为 摩擦力,与 M R液的剪切屈服应力有关.

MR阻尼器的阻尼力具体表达式为^[2,3]

$$F_{d}(t) = \frac{12\omega LA_{p}}{^{c}Dh^{3}} A_{P}x_{d}(t) + \frac{3L}{h} A_{P} \operatorname{sgn}[x_{d}(t)],$$
(3)

$$A_{P} = \frac{c}{4} \left(D^{2} - d^{2} \right), \qquad (4)$$

其中,L为活塞的有效长度;D为缸体的内径;d为活 塞直径;h为活塞与缸体的间隙; A^p 为活塞的有效面 积; $x_d(t)$ 为活塞与缸体的相对运动速度.

3 MR智能基础隔震结构的数学模型

图 2为 M R智能基础隔震结构,其中基底通过叠 层橡胶隔震垫支承在地基上,橡胶隔震垫部分地减少 地震能量向结构传播,设置在隔震层的 M R阻尼器 进一步减小结构的动力反应.假设该结构为剪切型的

广西科学 2005年11月 第12卷第4期

结构,整个结构按 (n+ 1) 个质点的模型来建模,运动微分方程如下:

$$[M]{x} + [C]{x} + [k]{x} =$$

- $[M]{1}x_g - {P} + {U},$ (5)
其中, $[M], [C]$ 和 $[k]$ 分别为质量矩阵、阻尼矩阵和
刚度矩阵; x 为各质点相对于地面的位移向量; x_g 为

地震加速度; $\{P\}$ 为各质点的恢复力向量; $\{U\}$ 为控制力向量.各矩阵的具体形式如下:

其中, m_b , k_b ,a和 p_b 分别为隔震层的质量、刚度、阻尼 和恢复力;k和 p_b 按隔震层恢复力图形的阶段确定, 这里采用双线性恢复力模型; F_a 为 M R阻尼器的控 制力.本文采用 wilson θ 法^[4]求解运动微分方程式 (5).

4 隔震结构的控制策略

设计简单而有效的控制器是施加 MR阻尼器的 控制力和有效保护隔震层变形的关键.由于模糊控 制^[5]不依赖结构本身的参数,控制准则是根据专家的 经验确定,且模糊控制所需采集的响应数据少,控制 器也较简单.本文采用使 MR阻尼器实现的半主动 控制力尽量接近模糊主动控制力的智能控制策略,其 中模糊主动控制力是以隔震层的层间位移和层间速 度为模糊输入,依专家的经验而确定的模糊控制规则 得出的模糊输出.

4.1 模糊控制策略

在 M P智能基础隔震结构中,考虑到 M P阻尼器 是通过调整参数 f_d 来实现调节控制力的.因此,它所 实现的可调控制力受到阻尼器本身滑动位移和滑动 速度的制约,而其滑动位移和滑动速度又与隔震层的 变形有关.在模糊控制中可以取隔震层的层间位移 Δ_{xb} 和层间速度 Δ_{yb} 作为模糊控制的输入.主动控制 力 u_0 作为模糊控制输出.采用"IF... THEN"语句描 述结构的模糊控制规则.前件为 Δ_{xb} 和 Δ_{yb} ,后件为 u_0 .定义它们相应的模糊集为

 $\{\Delta x_b\} = \{\Delta v_b\} = \{u_0\} = \{NL, NS, ZR, PS, PL\},$ (7)

其中,NL = 负大 (Negative Large),NS = 负小 (Negative Small),ZR = 零 (Zero), PS = 正小 (Positive Small),PL = 正大 (Positive Large).

为计算方便, Δx_b , Δv_b 和 u_0 均采用三角形隶属函 数,其中 (a^x , b^x), (a^v , b^v)分别为隔震层层间位移的范 围和隔震层层间速度的范围, (a^u , b^u)为控制力的范 围,且定义 { $\Delta x_b = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^x , b^x), { $\Delta v_b \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^x , b^x), { $\Delta v_b \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 对应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 可应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 可应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$ 可应于 (a^v , b^v), { $u_0 \} = \{-4, -3, -2, -1, 0, 1, 2, 3, 4\}$

图 3 隶属函数曲线

Fig. 3 The membership function curce a_x, b_x 结构被动隔震时隔震层的层间位移峰值; a_x, b_x 结构 被动隔震时隔震层的层间速度峰值; a_u, b_u 结构的控制力峰值

 a_x , b_x the peak displacement of the base- isolated cushion in passive controlled structure; a_v , b_v the peak velocity of the base- isolated cushion in passive controlled structure; a_u , b_u the peak control force of the structure.

确定了模糊语言变量的模糊集隶属函数以后,即 可以根据控制策略的渐变思想形成 M R阻尼器减震 控制的模糊控制规则表,其内容不依赖结构本身的参 数.控制规则对控制效果有影响,本文采用的控制准 则是根据专家经验确定,如表 1所示.根据模糊控制 规则表可得出模糊输出,采用重心法对其进行解模糊 处理,就可以得到 MR阻尼器作用在隔震层上的主动 控制力.

表1 模糊控制规则表

Table 1 The fuzzy control rules

Δv_b	NL	NS	ZR	PS	PL
NL	PL	PL	PS	PS	ZR
N S	PL	PS	PS	ZR	N S
ZR	PS	PS	ZR	NS	N S
PS	PS	ZR	NS	NS	NL
PL	ZR	NS	NS	NL	NL

4.2 半主动控制策略

为了使 MR阻尼器实现的半主动控制效果尽量 接近模糊主动控制的效果,同时又保证 MR阻尼器更 多地耗能,本文对 MR阻尼器参数的调节采用的半主 动控制策略如下:

 $\begin{cases} F_{d}(t) = \\ F_{\min}, & |u_{0}| \leqslant |F_{\min}|, \\ |u_{0}| \operatorname{sgn}(F_{\max}), & |F_{\min}| < |u_{0}| < |F_{\max}|, \\ F_{\max}, & |F_{\max}| \leqslant |u_{0}|, \end{cases}$ (8)

其中, Fmin 和 Fmax 为剪切屈服应力分别对应于 与min 和 fymax 时 M R阻尼器的库伦阻尼力的幅值; uo 为模糊主动控制时的主动控制力.

5 数值分析

本文采用一个五层框架作为计算对象,结构的 参数如表 2所示.基础隔震层采用了叠层橡胶隔震 垫,其阻尼比 a = 0.2,隔震层的质量 $m^b = 2.45 \times 10^3$ kg.采用双线性恢复力模型描述橡胶隔震垫的弹 塑性特性,水平初始刚度 $k_1 = 1.5 \times 10^4$ N/m,屈服 后的水平刚度 $k_2 = 0.9 \times 10^4$ N/m,屈服位移 $\Psi = 0.02$ m. M R阻尼器的参数如表 3所示.本文选用的地 震波为结构地震反应分析常用的 El Centro波,该地震 波的最大加速度为 341.7gal,出现在 2.12s处.鉴于本 算例的框架模型参数较小,将最大地震加速度调整为 200gal,时程反应的持续时间为 8s,时间间隔为 0.02s.为了比较,本文计算了原结构、被动基础隔震 结构和 M R智能基础隔震结构在地震作用下的动力 反应.各种结构各楼层的的峰值位移如表 4所示. 表 2 五层框架结构的参数

Table 2 The parameters of stories frame structure

楼层 Storey	质量 mass(kg)	刚度 Stiffness(kN/m)	阻尼 Damping(N/m)
1	2. 45× 10 ³	1.5×10^3	4. 5× 10 ³
2	2. 45×10^3	1.5×10^3	4.5× 10^3
3	2.45× 10 ³	1.5×10^{3}	4.5× 10 ³
4	2.45 103	1. 5× 10 ³	4.5 103
5	2.68 103	1. 62× 10 ³	5. 8 103

(下转第 299页 Continue on page 299) Guangxi Sciences, Vol. 12 No. 4, November 2005 matrix composites reinforced with SiC and graphite particles [J]. Tribol Lett, 2004, 17(1): 91-98.

- [2] Zhan Y, Zhang G. Mechanical mixing and wear debris formation in the dry sliding wear of copper matrix composite[J]. Tribol Lett, 2004, 17 581-592.
- [3] Harrigan W C. Commercial processing of metal matrix composites[J]. Mater Sci Eng, 1998, A244 75-79.
- [4] Liang S H, Fan Z K. Al₂O₃ particle reinforced copper matrix composite using for continuous casting mould [J]. Acta Metall Sinica, 1999, 5(12): 782–786.
- $[\,5\,]$ $\ \ Tjong\ S$ C, Lau K C. Abrasive wear behavior of TiB_2

(上接第 29顿 Continue from page 294) 表 3 MR阻尼器的参数

Table 3 The parameters of MR damper

h	D	d	L	Z ₀	$f_{y max}$	fymax
(mm)	(m m)	(mm)	(mm)	(Pa s)	(kPa)	(k Pa)
•				1 0	0	

表 4 各种结构各楼层的峰值位移

Table 4The peak displacement of each storey in differentstructure

	位移 Displacement(m)				
楼层 Storey	原结构 Uncontrolled structure	被动隔震 Passive base– isolated structure	智能隔震 Intelligeat base- isolated structure		
5	0. 1311	0.0903	0. 0519		
4	0. 1197	0.0901	0. 0506		
3	0. 0991	0. 0899	0. 0491		
2	0.0703	0.0894	0. 0476		
1	0.0364	0.0887	0. 0459		
隔震层 Baserisolated storey	-	0. 0880	0. 0449		

由表 4可知,虽然被动基础隔震结构的顶层峰值 位移比原结构减小了 31.12%,但却放大了底部楼层 的位移,而且隔震层的位移也较大.MR智能基础隔 震结构的顶层峰值位移比原结构减小了 60.41%,比 被动基础隔震结构减小了 42.52%,底部楼层的位移 比被动基础隔震结构还小.MR智能基础隔震结构的 隔震层的峰值位移比被动基础隔震结构减小 48.9%,而且所需的最大驱动力不过 7.20kN.可见, MR智能基础隔震的控制效果优于被动基础隔震的 particle-reinforced copper matrix composites [J]. Materials Science and Engineering, 2000, A282 183-186.

- [6] Lim S C, Ashby M F. Wear-Mechanism maps [J]. Acta Metall, 1987, 35(1): 1–24.
- [7] Venkataraman B, Sundararajan G. Correlation between the characteristics of the mechanically mixed layer and wear behaviour of aluminum, A- 7075 alloy and Al-M M Cs [J]. Wear, 2000, 245: 22-38.

(责任编辑:韦廷宗 邓大玉)

控制效果.

6 结论

本文为研究 MR智能基础隔震结构的抗震性 能,建立了该混合控制结构的数学模型,其中应用双 线性恢复力模型描述基础橡胶隔震垫的弹塑性特性, 运用模糊半主动控制策略计算 MR阻尼器的控制 力.具体的算例分析表明:(1)基础隔震结构设置了 MR阻尼器后,基础隔震结构的动力反应进一步减 小,使隔震层的位移控制在允许的范围之内,从而更 好地保护了隔震系统,使其免遭过度变形和破坏.(2) 混合控制的效果优于单一的被动控制,所需的驱动力 也较小,容易被实际工程接受.

参考文献:

- [1] 黄建文,赵 斌.叠层橡胶支座基础隔震建筑的非线性 分析 [J].西安科技学院学报,2000,20(4): 317-321.
- [2] 欧进萍.结构振动控制— 主动、半主动和智能控制
 [M].北京:科学出版社,2003.
- [3] 隋莉莉,欧进萍.半主动磁流变减振驱动器的工作原理 及应用[J].哈尔滨建筑大学学报,2002,35(3):9-13.
- [4] 陈以新. Matlab在结构动力分析中的应用 [J]. 福建建 筑, 1999, (2): 44-47.
- [5] 李士勇.模糊控制和智能控制理论与应用[M].哈尔滨: 哈尔滨工业大学出版社,2001.

(责任编辑:黎贞崇)