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Abstract : In this paper,a modified Gauss-Newton-based BFGS method based on the technique of Li
and Fukushima [10] is proposed. The given method possesses the global and superlinear
convergence under mild conditions. The presented method is better than the normal method for the
given problem.
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1 Introduction

It’s well known that the BFGS method is a very
effective.  method  for  solving  optimization
problems'~*), Some modified BFGS methods with
global and superlinear convergence have been
proposed®~*1. Li and Fukushima''"’ present a Gauss-
Newton-based BFGS method for symmetric nonlinear
equations,and get some better results. Motivated by
their ideas, Wei et al''' and Yuan et al™*'*] make a
further study.

In this paper,we consider the following system of
nonlinear equations

glx)=0,xE %", (1l

where g: Z"— %" is continuously differentiable, and
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the Jacobian V g (x) of g is symmetric for all x €

R". Let 0 be the norm function defined by 6(x) =% I

g(x) || % Then the nonlinear equation problem (1.1)
is equivalent to the following global optimization
problem
mind(x) ,x € Z%". 1 2)
For equation (1.1),Li and Fukushima''*) propose the
following linear equation to get the search direction d;
B.d, + 8z + 4 18) — & _

Q)

0, (1. 3)

where B, is an approximation of matrix V g;,g; is the
value of g(x) at x,(z; is the kth iteration) ,and @;_, is
the steplength at the previous iteration. Matrix By is
updated by the BFGS formula

Bisisi B | yayi
B = B, — — -
i . SZ B,s, yZ Sk !
where s; = Ty — Tiyr = glaxe + 04) — g(x1), and

(1. 4)

8: = giy1 — &i Here y, differs from the standard
update formula where y, is the difference of the
gradients giy, — g, which is denoted by d) in this
paper. The steplength a; is generated by

lg (e + ad) > — llgill> <— o, llagull* — o,llad,|?
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+ allgll’, , (1.5)
where o, and o, are some positive constants. {&)} is a

positive sequence satisfying

E &7 (o0, (1. 6)
k=0
The purpose of this paper is to present a modified

BFGS
difference from reference [ 10] is that: we use the

Gauss-Newton-based method. The main

following equations to get the d,
Bd, + g = 0,
where B, is generated by formula

Gl
(1.4). The
steplength @, is generated by inequality (1.5) and

g(xy + ad)'d, = 0,81 ds, (1. 8)
where 0; € (0,1). The numerical results is very
interesting comparing with Algorithm 1 in reference
[10].By Wolfe rule and the technique of reference
[10], we can deduce that the search technique
inequalities (1.5) and (1. 8) are reasonable. Then the
proposed method is well defined.

This paper is organized as follows. In the next
section, the presented algorithm for solving equation
(1. 1) is stated. Under some reasonable conditions,the
convergent results of the algorithm are established in
Section 3.In Section 4, preliminary numerical results

are reported.
2 The statement of algorithms

Algorithm 1

Step 0:Choose an initial point z, € R”", an initial
symmetric positive definite matrix B, € R"™", a
positive sequence {&;} satisfying inequality (1.6),and
constants r,0,0; € (0,1),0,,0, > 0,a_;, >0, letk =
03

Step 1:Stop if ||g:/| = 0. Otherwise solve equation
(1. 7) to get d;.

Step 2:1f

gz + do |l < pllgall- £2:.1)
Then take A = 1 and go to step 4. Otherwise go to step
35

Step 3:Let 7, be the smallest nonnegative integer 7
such that inequalities (1.5) and (1. 8) holds for @ =
r'. et af =7

Step 4:Let the next iterative be z,,, = x; + a,d,.

Step5:Put'si = Zip1 — = adjy O = Bir1 — &
and y, = g(zp + 0)) — g(x). If y75i <0, then Byyy =
B, and go to step 6. Otherwise,update B, by the BFGS
formula (1. 4).

Step 6:Let k: = & + 1. Go to step 1.

JEMAF 200654118 H13%5F4M

Algorithm LF

In Algorithm 1, the step 1 and the step 3 are
replaced by

Step 1:Stop if [|g:]| = 0. Otherwise solve formula
(1. 3) to get dy;

Step 3:Let 7, be the smallest nonnegative integer 7
such that inequality (1.5) holds for A = 7. Let 4, =
'k,

Remark

(1) The step 5 of Algorithm 1 can ensure that B,
is always symmetric and positive definite, then
equation (1.7) has a unique solution for each
k. Moreover, for every %, step 3 can be executed in
finite steps. Therefore,the method is well defined.

(2)Since {&:} satisfies inequality (1. 6) ,the
inequalities (2.1) and (1.5) indicate that {g:} is at
least approximately norm descent. Moreover, as we
will see in Section 3,inequality (2.1) holds for all 2
sufficiently large. In other words, {g:} is norm descent

when £ issufficiently large.
3 Convergent analysis

Let Q be the level set defined by

Q= {z|lg@ | <etllglzo |} 3.1
where € is a positive constant such that
Ze‘ <e (3.2)
k=0
Lemma 3. 1" Let {z,} be generated by
Algorithm 1. Then {x;} C Q.Moreover, {|g:l}

converges.
In order to get the global convergence of
Algorithm 1,the following Assumption is needed.
Assumption A
(i) g is continuously differentiable on an open
convex set (), containing ).
(ii) The Jaconbian of g is symmetric and bounded
on ), and there exists a positive constant M such that
[Ve@I<M Vzeq,. (3:8)
(iii) V g is uniformly nonsingular on ;;i.e. ,
there is a constant 7 > 0 such that
m|d|| < [[Veg(x)d| VY ze€ Q,d€ R
Remark  Conditions (ii) in Assumption A
implies that there exist constants M —>m > 0 such that
m|d| < || Veg(x)d|| < M|d|V = € Q,,d € R,

(3.4)
mlz — y| < llg(x) — gMI < Mz — y|lV =,
y € . £3:.5)
Under Assumption A, we can prove some useful
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properties pertaining to Algorithm 1.
Lemma 3.2
Assumption A be satisfied. Then the

Let conditions (i) and (ii) in
following
inequalities hold for every

0]l < Mlsell and [|yell < M|0ull < MP |5l

(3.6)

Proof Using inequality (3.5),we have

ol < Mlsell s

Now we prove the second inequality. By
inequality (3. 5) again,we get

lyell < M0Wll < M2|lsill.
The proof is complete.

Lemma 3. 3" Let Assumption A be
satisfied. Then the following statements hold.

()1If s, = 0, then there is a constant 72, > 0 such
that for all & sufficiently large
(3.7
(ii)Suppose that inequality (2. 1) holds only for a

yise = my sl

finite number of 4. Then we have

lehgl.llz < o0 (3.8)
k=0

and
E Al = 2 llsell? < oo. 3.9

k=0 k=0

Moreover , inequality (3. 7) holds for all 2 sufficiently
large.

Let Assumption A hold. Then
there are a positive integer £’ and positive constants f3;,

Lemma 3.4

j =1,2,3,such that,for any £ Z %', the inequalities

Ballsill* < st Bis; < Bsllsill” and || Bs,|| < B, [Is:l

(3.10)
hold for at least half of indices7 € {0,1,2,+**,%}.

Proof By Lemma 3. 3,inequalities (3. 6) and
(3. 7) hold for all % sufficiently large, say # = £'. From
theorem 2.1 in reference[ 14 ], conditions inequalities
(3.7) and (3. 6) imply that & <7 < k. Since #' is a
fixed integer and B, are positive definite, we may take
smallerf;, and large B, and f; if necessary so that
inequality (3.10) holds for all i << £'. Therefore
inequality (3.10) holds for at least half of indices i €
{051,252k},

Lemma 3.5 Let conditions (i) and (ii) in
Assumption A hold. Then there exist constants 0 < m,
<< M,, we have the following estimate for @, when £ is
large enough

o> % (3.11)

0
Proof By inequality (1.8),we have
(glxy +ady) — g)'dy = (0, — Dgidi =— (1
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— 0;)gld.. (3.12)

Using [lg(z: + aidi) — gulllldill = (g (zi + audy)
— g)"d, and inequality (3. 6),we get

Mey||di|* = |lg (xx + audy) — gulllldell =— (1 —
;) gids (3.13)
On the other hand, using equation (1.7) and
inequality (3.13),we obtain

Ma||d,||* = (1 — o;)d} Bid,. (3.14)
Combining inequalities (3.10) and (3. 14),we have

Ma|dil|* = (1 — 0)diBid, = (1 — as)ﬂzndk“z-

(3.15)

B:(1 — a3)

Then,we get a, = W sy let my = B,(1 — o3)

and M, = M. The proof is complete.

Now we establish a global convergence theorem
for Algorithm 1.

Theorem 3.1 Let Assumption A hold. Then the
sequence {x,} generated by Algorithm 1 converges to
the unique solution z* of equation (1. 1).

Proof By Lemma 3.1, we know that {|g:||} is
convergent. If

}irzloinfllgkll =105 (3516)
then every accumulation point of {x;} is a solution of
GOy, V. 2Cz) ~is
nonsingular on (), equation (1.1) has only one

equation Since uniformly
solution. Moreover,since {) is bounded, {z;} € Q has
at least one accumulation point. Therefore {z;} itself
converges to the unique solution of equation (1.1).
Thus it suffices to verify inequality (3. 16).

If inequality (2. 1) holds for infinitely many k’s,
then inequality (3.16) is trivial. Consider the case
where inequality (2.1) holds for only finitely many
k’s, so that step 3 is executed for all £ sufficiently
large. Since inequality (3.8) holds, we need only to
show that there is an infinite subsequence of {@;} with
a positive lower bounded ,i. e.

limsupea, = 0.

k>0
Using inequality (3.11),it’s obviously that the above
formula is satisfied. The proof is complete.

Notice that theorem 3.1 ensures that {xz;}
converges. In particular, s, — 0. Therefore,Lemma 3. 3
(i) yields that yis, > 0 for all % sufficietly large. Hence
we see from step 5 in Algorithm 1 that for all £ large
enough, B, is always generated by the update
formula(1. 4).

Similar to the proof of theorem 3.9 in reference
[10],it is not difficult to prove the superlinear result
of Algorithm 1. Here we state the theorem as follows
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but omit the proof.

Theorem 3.2 - Let Assumption A hold, and
suppose that ¥V g is H 6 lder continuous. Then the
sequence {x;} that is generated by Algorithm 1 is

superlinearly convergent.
4 Numerical results

In this section, we report results of some
preliminary numerical experiments with the proposed
method and Algorithm LF.

Problem. The discretized two-point boundary

value problem %

In the experiments, the parameters in Algorithm

LF and Algorithm 1 were chosen as r = 0.1,p =

v0.9,0, =0, =10"°,A_, = 0. 001,0; = 0. 95, and &,
= k%, where & is the number of iteration. The initial
matrix B, was always set to be the unit matrix. The
program was coded in MATLAB 7. 0. We stopped the
iteration when the condition |g(x)| << 107° was
satisfied. The tested results are listed in the following
Tables 1 ~ 4. The columns of the tables have the
following meaning ;

Dim is the dimension of the problem.

NI is the total number of iterations.

NG is the number of the function evaluations.
For the given problem (Tables 1~4),we can see that
the numerical results of the proposed method is more
effectively than those of the Algorithm LF. The two
methods have some common properties: the initial

points do not influence the number of iterations very

p— —1 =
g(x) = Az + P 1)ZF(.Z) 0,
where A is the n X n tridiagonal matrix given by
pre Lo £
ol g
==l 8ol
A= ’
AST 0. Y 9]
= 8

st Fifeo) = (B i e Eyonts . (o)) aowith: F.(7)
= CO8 i = Lsii=1,2 225574

Table 1 Test results for Algorithm LF

much, and

the numerical

results don’t change

obviously with the dimension increasingly.

NI/NG
Dim
(G R ) (50,°++,50) (500, +++,500) (—1yeep—1) (—50;+++5—50) (—500,++,—500)
n=>50 42/188 66/298 71/322 48/217 61/278 73/326
n=100 88/399 100/453 132/599 89/404 103/468 119/539
n=300 104/479 130/598 143/659 104/478 127/585 144/662
n=500 104/478 127/584 143/657 104/478 127/584 143/657
Table 2 Test results for Algorithm LF
NI/NG
Dim
(1,0,1,0°+) (50,0,50,0,) (500,0,5004,0,4+) (—1,0,—1,0,°*) (—50,0,—50,0,2+)(—500,0,—500,0,°)
n=>50 69/315 69/314 70/318 69/315 69/315 70/318
n=100 95/434 113/518 124/566 92/421 118/539 124/566
n=300 96/443 122/562 137/631 96/443 122/562 137/631
n=500 93/428 120/552 136/624 93/428 120/552 136/624
Table 3 Test results for Algorithm 1
NI/NG
Dim
(1,0+,1) (50,++,50) (500, +++,500) (—1,e00,—1) (—50,%+,—50)  (—500,+,—500)
n=50 62/155 76/192 102/244 60/149 90/223 102/244
n=100 65/168 86/221 92/235 65/168 76/193 89/227
n=300 64/160 75/188 88/221 63/157 75/188 85/214
n=500 66/165 80/200 88/221 72/180 83/208 93/232
Table 4 Test results for Algorithm 1
NI/NG
Dim
(1,0,1,04+) (50,0,50,0,+) (500,0,500,0,=*)  (—1,0,—1,0,*) (—50,0,—50,0,+)(—500,0,—500,0,°)
n=>50 53/137 69/177 86/213 53/137 67/173 85/210
n=100 56/143 78/198 81/207 55/139 69/174 76/193
n=300 56/140 70/176 84/211 57/143 68/171 81/204
n=500 56/143 70/178 80/204 56/143 70/178 80/204
S EAE 200611 8 H13%5% 44 291
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