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 Abstract:The  oscillation of a  kind  of higher-order  nonlinear  neutral  differential equation
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 (Where  f>to  and,2 ≥ 2  is even)is  discussed.  Some  sufficient  conditions  for the  oscillation of the

 

 above  equation  are  obtained.
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摘要 ：研究一类高阶非线性中立型方程
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（其中 ￡>  to,n ≥ 2 为偶数）的振动性 ，并获得该方程振动的一些充分条件 ．
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 Recently,  there  are  many  papers  concerning  the

 

 oscillation

 

 of

 

 second

 

 order

 

 neutral

 

 differential

 

 equation['-8].  However,only  a  few  papers  investigate

 

 the  oscillation  of  higher-order  nonlinear  neutral

 

 differential  equation  with  continuous  distributed

 

 delayc'~8].

     

 Fu  and  Liuc5]  gave  some  sufficient conditions  for

 

 the  oscillation of the  equation

      

 ddt
 [y(t) +  A(t)y(t

 -  r)] +

 

 Q(t,f)F(y[h(t,

 

 A.  2aferc6] showed  that the  equation

 

 =0

                                                                             

 N

 

 oscillates if声(t)  is a  nonnegative  continuous  function

 

 on

 

 [0,

 

 +  aa] and  that w(t》  o for t >  0 is continuous

 

 and  non-decreasing  on  [0, +  oo] with
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 In this paper,  we  consider  a  more  general  higher-

 

 order  nonlinear  neutral  differential equation

                  

 i-1

 

 which  has  continuous  distributed  delay.  And  we  will

 

 give  some  sufficient  conditions  for  the  oscillation  of

 

 Equation  (1).
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 Preliminaries

        

 Definition  l

  

 A  solution  z(t)  of Equation(l)  is

 

 called  eventually  positive  (or  eventually  negative)  if

 

 there  exists  a  constant  To  >  to,  such  that  r(t》  0  (or
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r(t)  <  0  ) for t >  To  .

     

 Definition  2

 

 A  solution

 

 oscillatory if the  solution x(t)

 

 and  not  eventually  negative.

 

 of Equation(l)  is called

 

 is not  eventually  positive

      

 Definition  3

 

 Equation(l)  is called oscillatory if

 

 all solutions  of Eq.  (1)  are  oscillatory.

      

 Throughout  this paper,  we  always  assume  that
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 g(t,<)  is  non-decreasing  with  respect  to  t  and  <,
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 (H3)  Fct,C,r)  e  C([to, +  oo)  X  [a,b] X  R,

 

 R),a 《)  G  C([a,b],R)  ,the  function  a(f) is non-

 

 decreasing,  and  the  integral of Equation(l)  is Stieltjes

 

 integral.
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 Main  results

     

 Lemma  l[9]

  

 If  u(t)  is  n-times  differential

 

 function  on  [0, +  aa] of constant  sign,  uh
’
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 constant  sign  and  identically zero  in  any  interval [to,

 

 +  oo] ,  and  u
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 Assume  that  the  following
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 for  any  number  r  >  0.  Then  Equation  (1)  is

 

 oscillatory.

      

 Proof

  

 Assume  that  i(t)  is  a  non-oscillatory

 

 solution  of  Equation  (1).  Without  loss of  generality,

 

 we  assume  that  r(t)  is eventually  positive(the  proof  is

 

 similar when  z(t)  is eventually  negative).  For  the sake

 

 of convenience,  the  function  y(t)  is defined  by

 

 By  the conditions  (Hi)  and  (H2),there  exists  a  ti≥  to

 

 b],i =  1,2,---,m,  so  we  obtain

 

 Using  Inequalities  (2)  and  (3),from  Equation(l)  it

 

 follows  that
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"(t)  is

 

 monotonically  decreasing.  In  the  following,  we  can

 

 proof  that  y'''-"(t) ≥  o  for t≥  t]  .  In  fact,  if there

 

 exists  a  t2三≥  tl,  such  that

 

 Integrating  both  sides of Inequality  (7)  from  tz to  t  ,by

 

 the  condition  (Hi),we  have

 

 <  0,  and  hence

 

 y
“一¨

(f) ≤

 

 a(t，z(f))
’

 

 (8)

 

 Integrating  both  sides of Inequality  (8)  from  t2 to  t  ,we
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 where  r  >  o  ,and  Ais  a  positive  constant;
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 This  contradicts  Inequality  (6). Therefore  we  have

        

 yo'-'(t) ≥  0 for t≥  ti.

 

 By  Lemma  l,there  exists  a  t3≥  tZ and  an  odd  l ,such
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that

 

 O,k  =  l,--- ,n  -  l,t≥  t3;

 

 let i =  1  ,we  get
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 Since  the  function  g(t,}) is non-decreasing,  using  the

 

 condition  (Hz)  ,we  have
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 <》 ]da(})  -  rc# (t) } ,t≥  T.  Integrating  both  sides of

 

 the above  inequality from  T  to  t  ,we  get
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 Let  t

    

 oo  ,  from  Equation  (4),  we  know  that  this

 

 contradicts  Inequality  (11).  Hence,  the  proof  of

 

 Theorem  l is completed.

      

 Corollary  l

 

 In  theorem  l,if we  let cp(t)三  1

 

 ana  if雕g 。④ [- 蚤

 

 c:(g(s,f))da 《)ds
 -

 aa.

 

 Then  Equation(l)  is oscillatory.
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