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A Conjugate Gradient Formula Generated by PRP and
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Abstract With the similarity of the form between PRP and HS formulas which have the same
numerator and different denominators, and proper combining and composing, a new conjugate
gradient formula is obtained- The present method based on this formula possesses a sufficient
descent property with the strong WolfePowell line search. Under some suitable assumptions and
the weak Wolfe-Powell line search, the global convergence result is established. The preliminary
numerical results show that the proposed method is efficient.
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PRP  HS
Wolfe-Powell
Wolfe—Pow ell
: 02417 A

Polak —Rib€ re-Polyak ( PRP) nonlinear conjugate
gradient method was reported separately by Polak,
Rib£ re and Polyak in 1969. The form of this method
is listed as follows

Xie 1= Xe+ b dr, (0 1)
wheref is a steplength which is computed by carrying
out some line search, such as the weak Wolfe—Pow ell

(WWP) line search

f(xe+ td )<< f(xe)+ gl de, (0.2
glxi+ tdi) di= Cgldk, (0. 3)
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or the strong Wolfe-Powell ( SW P) line search: (0. 2)
and

| g(xi+ tde) dil < - Cgldu, (0. 4)
where d€ (0,1) and €€ (d, 1) ,dr is the search
direction defined by

d - & if k= 1, (0. 5)
s ok + Ude if k= 2, '
where the parameter U is computed by the following
formula
e gl = ge) (0. 6)

ng- 1Gk- 1
In addition. the other formulae of U were also given by
other authors
T
g (g = gi-1)

S_
[J‘I:I - (gk - 8k I)Tdk_l’ (0 7)
T
U'R: _Tgk gk , (0 8)
G- 18k- 1
T
D - (.
LI‘ B dkrflgk—l’ (O 9)

Guangxi Sciences, Vol. 15 No. 1, February 2008



S T (or — ar 1
03
= - ’

i (0. 10)

T
&
U= (gk—ggkk:g])Tdk-ﬁ (0. 11)
which were successively called HS, FR, CD, LS and
DY method.
PRP method is one of the methods with the best

num erical behavior among the above methods till now.

When the algorithm generates a small steplength, the
generated by PRP method

approaches automatically

search direction dk
to a negative gradient
direction, and then avoids efficiently the drawback of
FR method, which generates continuously small
steplengths  Pow ell"! proved the global convergence of
PRP method when the steplength & = xw1 — xx
approaches to zero. But for a general nonconvex
function, Powell” gave a counterexample which
showed PRP method was not convergent. Dai”! also
illustrated with examples, even if f(x) is uniform
convex, and the parameter ec (0,1) is sufficiently
small, PRP method is very likely to generate an ascent
direction. For a general nonconvex function, Pow el
suggested to restrict U™ to be nonnegativ e

U= max{0,U"}. (0. 12)
Gilbert and Nocedal”! considered the above suggestion
of Powell 5§ and established the global convergence of
the abovevaried PRP methodsfor a general nonconvex
function under the proper line search. However,
Gilbert and Nocedal”' also showed by examples that
even if the object function is uniform convex, U is
also likely to be negative. Over all the above results,
the global convergence of PRP method is not
optimistic. Therefore, in order to find a conjugate
gradient method which has good numerical result and
converges globally, it is very significant to do further
study of PRP formula.

In this paper, we investigate a conjugate gradient
method generated by a new formula. In section 1, we
represent the new algorithm of this method and its
properties.  The global convergence result is given in
section 2. The preliminary numercal results are
contained in section 3. Finally, we have a conclusion

section.
1 Algorithm

Since the conjugate gradient methods belong to
FEAE 20084 24 % 15K% 1

the descent methods for solving unconstrained

optimization problems, the new U should be chosen
such that ngdk <. 0 if a line search is used.
Furthermore, due to the sufficient descent condition

(LD

is a very nice and important property for conjugate

gd< - cll gl ’

gradient methods, we hope that the new formula U
satisfies (1. 1). In the following, we will find U such
thatdr satisfies (1. 1).

Noting the similarity of the form between PRP
and HS formulae which have the same numerator and
different through

dinominators, combining and

composing properly, we get a conjugate gradient
formula as follows
UM e, 5, 4 =
gl 2 = ] gl gl
ol (g - gk—l)Tdk—1| + sl gl *
e
where_1€ (0,+ ©0), 2€ (_]Tev"' oo ), s€
(0,+ =), +€
nonnegative of U , we define
yr (L1, 2,3, 4) = maX{O,L;H(_l,_Z,_:%,
_4) ). (1. 3)
In the following, we investigate whether the

method generated by (1.2) and (1. 3) satisfies the

sufficient descent condition (1. 1).

(1.2

(0, + ©©). In order to ensure the

A sequence U is called a descent sequence (or
sufficient descent sequence) for conjugate gradient
methods if there exists a constant {€ [0, 1] (or f€
[0,1) ) such that for all &= 2,

Ugl di- =< Al gl 2. (1.4
If we use the SW P conditions (0.2) and (0.4) to
choose# ,then it is easy to check that U™ (1, 2, 3,
_4) is a descent sequence for conjugate gradient
methods if gi- 1di- =< 0. In fact,ifu’H (1, 2, 3, 4)
= 0, then it is obvious that g (1, 2, 3, 4)ghd-
= o< grll > litis true with any line search; and if

IIH (_|7_25_39_4) = UH(_17_29_35_4) > 07 and
g 1di- =<' 0, then from the SW P conditions, we have

| (g - gk—l)Tdk71|> ‘ng—ldk—l‘ - ‘ngdk—l‘>
_é‘gkrdk—l‘ - |l gldl = (_é - Dlgldil. (1.5
So

[JfH (_l,_Z,_},_ét)g/{dk* 1=

il }Zk” L 4| nggk-1|
ol (g - @) d-al + sl gl

| zg/{dkf ]<
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gl 2 — 4l ol e il

! <
ol (g - @) dieal + sl gl ! gl di <
gl ? T
<
ol (g - g 1) di gl il
Il gll 2
1 — ‘ngdk-1|<
_2(7e - | gt di- i
1|| gk” : ‘ T |
1 T gide-l =
_2(Te - )| g de- 1l
¢ 2
- ol gl . (L 6)

: . Pt
From the above inequalities, whether ™" = Oor

U™ > 0, we can deduce that U satisfies (L4)

with I= _; {— c- Therefore, we have the following
results.
Theorem 1. 1  Suppose UM (1, 2, 5, 4) s

defined by (1.2) and (1. 3). Then with the SWP line

search, for all k== 1,wehave

e
gd<< - (1- "; 1 ol gl 2,

(L7)
Proof For anyk= 1, suppose that ngdk< 0.If

uyr 1, 2, 3, 4)= O,thends 1= — gw1.So we
g
have gl€~ ider = — Il gw il 2 (1 - _;
< 2 .. , e
= )l gl 2, for some positive scalar— .

Otherwise, from the definition of U (1,2, 3, 4),

we can obtain

glgr de 1= — Il G+ 1|| 2+
g il 2= 4l o 1l g
ol (ge - g)Tdd + sl gl 8T TES
— 1l ge il 24
I|| Sk 1|| 2 4| gkz ng' | Z; ldk‘<
ol (ge 1 - gk)Tdk‘ + sl gl 2 =
|| Sk 1|| 2 T
— Il g il e : Sl <
gh 1 i (ge 1 - gk)Tdk‘ ‘gk 1l <
gl
-l ge il ?+ & | ghdl =

(e - Dlghal
1 &

- (1- 1o )l ge il 2,
The last_inequa]ity follows ( 1. 5). Combining with 2

e
= i - e we have (1. 7) provided that Fd< 0.
Hence, from glrdl = - Il gll < 0, we can deduce
that (1. 7)holds for all .= 1.
The following theorem tells us that the range of

g (1, 2, 3, 4) can be defined when its parameters

16

4k 1) by the formulae ( 1. 2)

satisfy some conditions.
Theorem 1. 2 Suppose that U (Ci_2a_a_s)
is defined by (1.2) and (1. 3).
(a)If_ = _2 and WW P line search is used., then
for all
k= 1,05 g (i, 2, 3, 4y Y
hold;
(b) f_ & _3, then with any line search, for allk
= 1,
o< Q" i, 2, 3, a)< ugr
hold.
Proof It is clear that the inequalities (1. 8) and
(1. 9)hold under their own conditions when e 1,
_2,_3, 4)= 0,whereW" > Ois used with WWP line

: 13
search. We consider the case where A" (1, 2, 3,

(1.8)

(1.9

~4)> 0. So we have

(a) g C1, 2, 3, 4)=

gl 2 = ul ol gl
o (gr - gz(fl)Td/c71| + sl gl =
Al gill 2
ol - g deal + sl gl T

il gill 2
ol (g - g-1) di- ]

< U,

where the last inequality uses that W' > Owith WW P
line search.
U™ (1, 2, 5, a)=
gl > = ol gl gl

r
il

ol - g dedl + sl g
gl 22< U*r.
sl gl
Now we give the corresponding algorithm.

Algorithm 1. 1 Step 0 Givex1€ R, set di
= - gi,k= 1. ¥ @2= 0, then stop

Step t Find a# > Osatisfying the SWP
conditions (0. 2) and (0. 4).

Step 2 Letww 1= Xk+ &de and@e 1= g(Xk 1) .

Ifge 1= 0, then stop.
Step 3 Computeujrgl (e 1y, 20 1y, 3(k 1),

and (1. 3), then

generatedi+ 1 by (0. 5).
Step 4 Setk: = k+

From Theorem 1. I, we have the following

1, go to Step 1L

conclusions which indicate that Algorithm L 1is well-

defined and has a nice property, i e. the suffident

descent property (1. 1) provided that we choose «
Guangxi Sciences, Vol. 15 No. 1, February 2008



and 2 such that

u= infl} > 0, (1. 10)
h - _k_ €
whereuk = R

Corollary 1.1  Suppose that ( 1. 10) holds.
Then Algorithm 1. 1iswell-defined, either there is ako
such that gk, = O or generates a sequence {xx} such

that for all & , the property ( 1. 1) holds.

Proof Ifg = O, then we have finished our
proof. Supposegi” 0, Thendi= — g andg di= -
||gl||27é 0. So

gide< — ullgiIP.
Then, we can generate (¢1,x2,g2) . f g277 0, we can
havel? and d2 . Using Theorem L 1, wehave
g d=< - ullgIl<< - yllglf.
Repeating the above discussions, and noting that tx >
0, we can deduce our conclusion by induction. The
following conclusion is a direct result of Theorem 1. 1.
Corollary 1. 2 For allk= 1,
gt d< — ullgll®.
Remark 1. 1

U is important for some formulaes. For example,

(1. 11)

The nonnegative of the parameter

Powe]l[4]suggested that in PRP method, the parameter
in (0. 6)is not allowed to be negative, i e. (0. 12). By
using a complicated line search, Gilbert and Nocedal”’
were able to establish the global convergence result of
PRP and HS methods by restricting the scalar U to be
nonnegative.

Remark 1. 2 From Corollary 1. 2, Algorithm
L. 1 always generates a descent direction di in every
step, and furthermore, the sufficient descent property
(1. 1) holds provided thatu > 0. But it is not always
the same for some formulaes. For example, even if f is
a uniform convex function, PRP method with SWP
line search may be fail to generate a descent
direction'®’. The sufficient descent property (1. 1) is
very important for the global convergence of the
conjugate gradient methods”™'. So we hope to keep
(1 1) for the conjugate gradient methods. From
Theorem 1.1, formula uH (1,2, 3,_4) possesses
the sufficient descent property with SW P line search.

Remark 1.3 In Algorithm L 1, formula U can
be chosen with_ = %+ % or v~ 2+ % .H u
7 _ %+ _3k, itis not any nonlinear conjugate gradient

method, but it has a close relationship with the
FEAE 20084 24 % 15K% 1

conjugate gradient methods.
2 Global convergence resul ts

Assumption A The level set K= {x€ Rl f(x)
< f(x1)} is bounded.

Assumption B There exists a constant L such
that for any X ,ye Ka

llg(x) - g(y)I Lllx - yll.

Theorem 2 1"
point for which Assumptions A, Bhold. Consider the
methods (0. 1) and (0. 5), where % is computed by
WW P line search, and U is

(2. 1)

Suppose that X1 is a starting

e [- e 1], (2.2
U
wherere= [90L Then if &= Ofor alle= 1,wehave
g d=< 0 (2.3)
for allk= 1.
Further, the method converges in the sense that
k»]ig)linf”gkﬂz 0. (2. 4)

Theorem 2. 2 Suppose Assumptions A, B hold,
and {x«} is generated by Algorithm 1. 1. Ifg«== 0, for
alll= 1,(2 3)holds. Further, so does (2. 4).

The above theorem 2. 2 is the direct result of
Theorem 2 1 and (1. 7).

Theorem 2. 3 Supposef(X) is continuous,
Assumptions A, B hold, and {x«} is generated by the

Algorithm 1L 1 If = 3w ,u— sup{-_lk

_ %

e
e
< 1, then (2 4) holds.

Proof W e consider the case where &1 = UM
> 0. From the definition of dewe have

laelP = llgell* = 22U gl dee 1+ (UMY llde- 1 11K
||gk||2+ Pt g;f di- 1| + (GR)2||dk—l||2< ||gk||2+

e 4

2=t llglP e Bl P gl
Lo i I
E Mgt
for alll= 2
Hence

Il i |? 3 Il i 1|7

<
gl TigeP™ TigiiII* (2.5)

In (1. 3) ,inyH+ = 0, (2 5)holds. Suppose that(2. 4)

does not hold, then we have a positive

constantM, such that for all.= 1,
llgil== M

So follows(2 5), we obtain

(2. 6)
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gl 3

lldi- 1 lI?
< —_ —_—
=M gt

el
. Il
Using the facts that@| = 1,we get
&l <a' 3 1 v 3
g~ 24 M* Tg P~ 2 Mie
4
gl M
1ddlP~ 3%

According to the sufficient descent condition, we

e
have(ngdk)2> (1- _]2,,: 1fe)ngk”4 from which we

can get
gl L (@ay<
1- :;k _ e
— (ay
1 - u g )
Hence
LN (gd) N gl v M
= = —
1- 14;1 [l dell? /Zk:)l ||dk||2/z,;:] 3k
which implies that
2 {gkrdk[2_+
= all* ~

It contradicts with the Zoutendijk condition. The
proof of the theorem is completed.

Theorems 2.2 and 2.3 show that the present
method has global convergence under the relatively
weak conditions, which satisfies our hope for the
formula of U stated in the former section of this

article.
3 Numerical experiment

In this section, we will test the following three
methods.

PRPSWRE PRP formula with SWP line search,
whereW= 0.01,€= 0. 1.

PRP SWE PRP formula with SWP line
search, whereW= 0. 01, €= 0. 1.

PH SWPB PH formula with SWP line search,
whereW= 0.01,€= 0.1, 1= 3, 2= 2, 3= 1, 4=
L.

The problems tested are from Reference [8]. For
each tested problem, the termination condition is

llg (x) < 10 °°.

The com parison results of the performance of the

three methods are showed in Table 1.
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Table 1 Test results for the PRPSWP /PRP° SWP/PH
SWP methods
NIUNF/NG
Problem  Dim
PRPSW P PRP SWP PH SWP
ROSE 2 29/502/65 22 /394 /60 28/405/60
FROTH 2  12/30/20 10 /28 120 12/31/23
BADSCP 2 - 4175097100  39/444/84
BADSCB 2 13/80/22 11/123 22 13/76/22
BEALE 2 9/126/21 9/173 120 16/89/30
JENSAM 2 - - 13/34/23
HELIX 3 49/255/83 32 /265 /55 33/129/56
BARD 3 23/98/37 27 /152 /43 16/86/25
GAUSS 3 4/57/6 415716 4/9/5
MEYER 3 - - -
GULF 3 1/2/2 Y 11212
BOX 3 - - -
SING 4 199/611/338  49/155 /79 72/251/121
WOOD 4  169/1103/302 101/549/195  104/842/178
KOWOSB 4  55/300/94 51/249 /79 66/282/108
BD 4 - - -
0SBI 5 - - -
BIGGS 6  264/875/423 - 68/338/117
0SB 11 254/1061 /418 250 /1011/412 ;??2’7912/
WATSON 20 DSSITIIL 2U3STSOS 147273633
ROSEX 8  23/402/59 25 371 /62 29/315/59
50 31/533/77 24 /492 /60 25/268/61
100 28/337/74 35/514/101  30/276/63
SINGX 4 199/611/338  49/155/79 72/251/121
PEN1 2 5/18/12 6120 /14 5/18/12
PEN2 4 12/134/28 12 /136 127 11/175/25
50 ?52§2795 / 136 /898/282  128/797/245
VARDM 2 3/9/7 30977 3/9/7
50 10/52/36 10 /52 136 10/52/36
TRIG 3 12/81/24 14 /131 125 18/138/31
50 41/279/72 41 /230 /72 39/225/74
100 46/342/87 46 1341 /85 53/446/101
BV 3 12/25/16 1225 /16 11/21/14
10 75241117 52417117 45/90/69
IE 3 5/12/7 51277 5/12/7
50 6/13/7 5/11 /6 5/11/6
100 6/13/8 6/13 /8 5/11/7
200 6/13/8 6/13 /8 5/11/7
500 6/13/8 6/13 /8 6/13/8
TRID 3 10/75/16 1333719 15/37/22
50 26/55/31 26 /55 31 28/107/32
100 30/67/36 30 /67 136 29/65/35
200 30/66/36 30 /66 /36 31/68/37
BAND 3 9/68/13 1023117 7/64/12
50 18/183/24 16 /331 125 19/670/26
100 18/183/24 16 /373 126 19/715/29
200 19/283/27 17 /340 127 19/679/27
LIN 2 1/3/3 1313 1/3/3
50 1/3/3 1313 1/3/3
500 1/3/3 1313 1/3/3
1000 1/3/3 1313 1/3/3
LINT 2 1/51/2 15112 1/51/2
10 1/3/3 1313 1/3/3

Table 1 shows the computation results, where the

columns have the following meanings Problem is the
name of the test problem in M ATLAB, Dim the
Guangxi Sciences, Vol. 15 No. 1, February 2008



dimension of the problem, NI is the number of
iterations, N F is the number of function evaluations,
N G is the number of gradient evaluations.

In order to rank the iterative numerical methods,
we compute the total numbers of function and gradient
evaluations by the following formula

Nwa = NF+ m* NG, (31
where m is an integer- According to the results on

591 the value of m can be set

automatic differentiation
tom= 5.

Since PRPSW P method is one of the commonly
efficient conjugate gradientmethods, we

PRP SWP, PH SWP methods with PRPSWP

method as follows for each tested examplei , com pute

compare

the total numbers of function evaluations and gradient
evaluations required by the evaluated method
(EM(j)) and PRPSWP method by the formula
(3. 1), and denote them by Nww.:( EM (7)) and Nuwtati

( PRPSW P); then calculate the ratio
. Nmtnl.i( EM(/))
ri(EM(7)) = "N PRPSW P)-

If EM (jo) does not work for example io , we

(3.2

replace 71, (EM (jo)) by a positive constant  which is
defined as follows

f= max{rn(EM(j)): (i,))& S},
where

Si= {(i,j): method/ does not work for example
i}.

The geometric meaning of these ratios for method
EM (j) is

rEMG)) = ] r(EMG)))"

where S denotes the set of the test problems and | Sl is

(3.3)

the number of elements in §. One advantage of the
above rule is that, the comparison is relative and hence
is not to be dominated by a few problems for which
the method

evaluations and gradient functions.

requires a great deal of function

According to the above rule, it is clear that 7
(PRPSWP)= 1. The values of » (PRP SWP) and r
(PH SWP) are 0. 9049 and 0. 7704

Remark 3. 1
parameters in ( 1. 2) satisfy_ 1= _2+

It is very clear that when the
3,(L2)isa
conjugate gradient formula in case of exact line search.
3, 2= 2, 3= I when
computational  experiment.  From  the
computational results in7 (PRPSWP)= 1, r (PRE

SWP)= 0.9049 and r (PH SWP)= 0. 7704, we can

So we choose_1 = I, 4=

doing

S A 20084 20 % 15K% W

see the superiority of PH method over other two

methods.
4 Conclusions and future work

In this paper, we discussed a new conjugate
gradient formula, which generates by PRP and HS
formulas. The new method based on this formula
satisfies the sufficient descent condition, and under
particular assumptions and with WW P line search, it
conv erges globally.

From our preliminary numerical results, PH
method not only possesses global convergence, but also
performs much better than any other conjugate
gradient methods given in the related literatures, such
as PRPSWP method and PRP SWP method.
However, since the numerical results given in this

paper are dependent on the choosing of the

parameters, it is very necessary to do further study for
choosing more suitable parameters to have more

numerical results to this algorithm.
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