Sub-Hom-coassociative Coalgebra 子 Hom-余结合余代数

REN Bei-shang, LI Gui-ying, KONG Qing-rong, GUO Ying-xue, ZHANG Wei-wei 任北上,李桂英, 孔庆荣,郭映雪,章维维

(Department of Mathematics and Computer Science, Guangxi Teachers Education University, Nanning, Guangxi, 530001, China)

(广西师范学院数学与计算机科学系,广西南宁 530001

Abstract According to the notion of Hom-coassociative coalgebra and Sub-Hom-coassociative coalgebra, we investigate some fundamental properties of them, finally obtain the close relationships between the Sub-Hom-coassociative coalgebra and the ideal of the dual Hom-associative algebra.

Key words Sub-Hom-coassociative coalgebra, Hom-associative algebra, homomorphism 摘要: 根据 Hom-余结合余代数及子 Hom-余结合余代数的相关概念,讨论子 Hom余结合余代数的基本性质,得到子 Hom余结合余代数与对偶 Hom结合代数的理想之间的相互关系.

关键词: 子 Hom-余结合余代数 Hom 结合余代数 同态

中图法分类号: 0153.3 文献标识码: A 文章编号: 1005-9164(2008)02-0109-04

A Hom-algebra structure is a multiplication on a linear space where the structure is twisted by a homomorphism. Hom-associative algebras which were introduced by Makhlouf and Silvestrov in [1], generalize the well known associative structures to a situation where associativity law is twisted. Based on these, we obtain the Hom-coassociative coalgebra structures by dualization, then define the new notion of Sub-Hom-coassociative coalgebras and discuss some fundamental properties of them.

Throughout this paper, we always assume that K is an algebraically closed field of characteristic 0 and V is a linear space over K, $V^* = \operatorname{Hom}^{\kappa}(V,K)$ denotes the dual space of V. If $S \subseteq V$ is the subset of V, then $S^{\perp} = \{v^* \in V^* \mid \langle v^*, S \rangle = 0\}$. If $T \subseteq V^*$ is the subset of V^* , then $T^{\perp} = \{v \in V \mid \langle T, v \rangle = 0\}$.

1 Hom-associative algebra

Definition 1. 1^[1] A Hom-associative algebra is a

quadruple $(V, _, T, Z)$ together with three K -linear maps

$$_{:}$$
 $V \otimes V \rightarrow V, \stackrel{\sim}{\downarrow} V \rightarrow V, \stackrel{\sim}{\downarrow} K \rightarrow V$

which satisfy the following conditions

$$(1.1)$$
 ° $(\otimes T)$ = ° $(T\otimes _)$;

$$(1.2)$$
 $^{\circ}$ $(Z \otimes id) = id$ and $^{\circ}$ $(id \otimes Z) = id$.

Definition 1. 2 Let $(V, _, T, Z)$ and $(V', _', T', Z')$ be two Hom-associative algebras. A linear map $f: V \to V'$ is a homomorphism of Hom-associative algebras if the following diagrams are commutative.

Proposition 1. 1 Suppose $(V, _, T, Z)$ is a Homassociative algebra, I is an ideal of V and C: $V \rightarrow V/I$ is the natural map onto the quotient vector space. If T(I) $\subseteq I$, then V/I has a unique Homassociative algebra structure such that C is a morphism of Homassociative algebras.

Proof Let V/I = E. Firstly, we find $_E, _E, _Z_E, _Z_E$

$$({}^{c} \bigotimes {}^{c})(a \bigotimes b) = {}^{c}(a) \bigotimes {}^{c}(b) = 0,$$

then ${}^{c}(a) = 0$ or ${}^{c}(b) = 0$, i. e. $a \in I$ or $b \in I$. But I is an ideal, so ${}^{c}(a \bigotimes b) = {}^{c}(ab) = 0$, i. e. $a \bigotimes b \in I$

研究工作。
* 广西自然科学基金项目(0640070,0447038),广西研究生教育创新计划项目(200610603 R03),广西教育厅科研项目,广西师院学生科

作者简介: 任北上 (1956-),男,副教授,主要从事环与模、Hopf代数

研基金项目资助。

收稿日期: 2007-12-06

广西科学 2008年 5月 第 15卷第 2期

 $\operatorname{Ker^c}_-$, thus $\operatorname{Ker}({}^c \otimes {}^c) \subseteq \operatorname{Ker^c}_-$. According to the universe properties of module, there is a unique Kmap $E: E \otimes E \to E$ s. t.

$$_{E}(\stackrel{c}{\otimes}\stackrel{c}{\otimes}) = \stackrel{c}{-}. \tag{1}$$

Let

$$Z_E = {}^{\text{c}}Z_{\text{c}}K \rightarrow E$$
 (2)

By (1),
$$\forall a,b \in V$$
, $c(ab) = c(a \otimes b) = e(c \otimes c)$ ($a \otimes b$) = $e(c \otimes c)$ ($a \otimes b$) = $e(c \otimes c)$ ($a \otimes b$) = $e(c \otimes c)$ ($a \otimes c$) = $e(a) \circ c(b)$.

Since $c \circ T(Ker \circ c) = c \circ T(I) \subseteq c(I) = 0$, then $Ker \circ C \subseteq Ker \circ C$. According to the universe properties of module, there is a unique K -map $E : E \to E$, such that $c \circ T = c \circ T \subseteq E$.

Then we need to pove that (E, E, T_E, Z_E) is a Homassociative algebra.

 $\forall \overline{a}, \overline{b}, \overline{c} \in E \text{, there exist } a, b, c \in V \text{ s. t. } {}^{\mathsf{C}}(a) = \overline{a}, {}^{\mathsf{C}}(b) = \overline{b}, {}^{\mathsf{C}}(c) = \overline{c}. \text{ Since}$ ${}_{-E}(\mathsf{T}_{E} \bigotimes_{-E})(\overline{a} \bigotimes_{\overline{b}} \bigotimes_{\overline{c}}) = {}_{-E}(\mathsf{T}_{E} {}^{\mathsf{C}}(a) \bigotimes_{\overline{c}} {}^{\mathsf{C}}(b) {}^{\mathsf{C}}(c)) = {}_{-E}(\mathsf{T}_{A} {}^{\mathsf{C}}(a) \otimes_{\overline{c}} {}^{\mathsf{C}}$

$$T_{E}(\overline{c})) = \underline{}_{E}(\underline{} \otimes T_{E}) (\overline{a} \otimes \overline{b} \otimes \overline{c}).$$
Thus $E(T_{E} \otimes \underline{}_{E}) = E(\underline{} \otimes T_{E}).$

 $\forall k \otimes \overline{a} \in K \otimes E$, there exists $a \in A$, s. t. $c(a) = \overline{a}$. Since

So_ $E(Z_E \otimes id) = id$. Similarly, $E(id \otimes Z_E) = id$. Therefore (E, E, T_E, Z_E) is a Hom-associative algebra. According to (1), (2) and (3), we know ^C is a morphism of Hom-associative algebras.

Theorem 1. 1 Let (A, A, T_1, Z_1) and (B, B, T_2, Z_3) be Hom-associative algebras, $f: A \rightarrow B$ is a morphism of Hom-associative algebras, I is an ideal of A and $A \rightarrow A/I$ is the natural map. If $A \rightarrow B \rightarrow A/I$ is the natural map of $A \rightarrow B \rightarrow A/I$ is the natural map. If $A \rightarrow B \rightarrow A/I$ is the natural map. If $A \rightarrow B \rightarrow A/I$ is the natural map. If $A \rightarrow B \rightarrow A/I$ is the natural map. If $A \rightarrow B \rightarrow A/I \rightarrow B$ is a morphism of Hom-associative algebras $A \rightarrow B \rightarrow B$, s. t. $A \rightarrow B \rightarrow B$

Proof Let E = A/I. By Proposition 2. 1, $(E, _{\underline{F}}, \underline{F}, \underline{Z})$ is a Hom-associative algebra where $\underline{F}(C \otimes C) = C_A$, $CT_A = T_B C$, $\underline{Z} = CZ_A$.

Since ^C is surjective and $Ker^C \subseteq Kerf$, According to the universe properties of module, there is a unique $K-map\ g.\ E \rightarrow B$, s. t. $g^C = f$.

Firstly,
$$\forall a,b \in A$$
,

Thus_ $B(g \otimes g) = g_E$.

Secondly, $\forall a \in A$, $\mathbb{T}_{g} g^{c}(a) = \mathbb{T}_{g} f(a) = f \mathbb{T}_{A}(a)$ = $g^{c}\mathbb{T}_{A}(a) = g \mathbb{T}_{E} c(a)$, Thus $\mathbb{T}_{g} g = g \mathbb{T}_{E}$.

Finally, $\forall k \in K$, $gZ_{\ell}(k) = g^{c}Z_{A}(k) = fZ_{A}(k)$ = $Z_{B}(k)$, Thus $gZ_{\ell} = Z_{B}$.

Therefore g is a morphism of Hom-associative algebras.

2 Hom-coassociative coalgebra and Sub-Hom-coassociative coalgebra

Definition 2. 1 A Hom-coassociative coalgebra is a quadruple (V, Δ, U, X) together with three K -linear maps

$$\Delta: V \rightarrow V \otimes V, U V \rightarrow V, X V \rightarrow K$$
 which satisfy the conditions

$$(2.1) (U \otimes \Delta) \circ \Delta = (\Delta \otimes U) \circ \Delta$$

$$(2.2) (id \bigotimes X) \circ \Delta = id \text{ and } (X \bigotimes id) \circ \Delta = id$$

Remark 2. 1 Let (V, Δ, U, X) be a Hom-coassociative coalgebra. We introduce the Sweedler notation $(c) = \sum_{i=1}^{\lfloor 2/3 \rfloor} c_i \otimes c_i$, for any $c \in V$.

Duality by Definition 1.2, we obtain

Definition 2.2 Let (V, Δ, U, X) and (V', Δ', U', X') be two Hom-coassociative coalgebras. A linear map $g: V \longrightarrow V'$ is a homomorphism of Hom-coassociative coalgebras, if it satisfies

$$(g \otimes g) \circ \Delta = \Delta' \circ g, g \circ U = U' \circ g \text{ and } X = X' \circ g.$$

Definition 2. 3 Suppose (V, \triangle, U, X) is a Hom-coassociative coalgebra and W is a subspace which satisfies the conditions $\triangle(W) \subseteq W \otimes W$ and $U(W) \subseteq W$. We can check that $(W, \triangle|_W, U_W, X_W)$ is also a Hom-coassociative coalgebra, and W is called a Sub-Hom-coassociative coalgebra of V.

Remark 2.2 Let (V, Δ, U, X) be a Hom-coassociative coalgebra, then

- (i) $G(V) = \{x \in V | \Delta(x) = x \otimes x, U(x) = x, X(x) = 1\}$ is a Sub-Hom-coassociative coalgebra of V.
- (ii) Any nonzero element $x \in G(V)$ fixes a one dimensional Sub-Hom-coassociative coalgebra Kx.

Remark 2. 3 Suppose (V, Δ, U, X) is a Hom-coassociative coalgebra with structure maps $\Delta(x) = x$ $\otimes x$, U(x) = x and X(x) = 1, then (V, Δ, U, X) can be

Guangxi Sciences, Vol. 15 No. 2, May 2008

represented as the sum of Sub-Hom-coassociative coalgebras of V.

Proposition 2. 1 If $g: C \rightarrow D$ is a homomorphism of Hom-coassociative coalgebras, then Img is a Sub-Hom-coassociative coalgebra of D.

Proof We have $\Delta D \circ g = (g \otimes g) \circ \Delta c$ and $Ub \circ g = g \circ Uc$ because g is a homomorphism of Homocoassociative coalgebras. Then for any $c \in C$, we have

$$\Delta_{D} \circ g(c) = (g \otimes g) \circ \Delta_{C}(c) = \sum (g \otimes g)(c)$$

$$\otimes c = \sum g(c) \otimes g(c) \in \operatorname{Im} g \otimes \operatorname{Im} g \operatorname{and} U \circ g(c)$$

$$= g \circ U(c) \in \operatorname{Im} g.$$

Therefore $\operatorname{Im} g$ is a Sub-Hom-coassociative coalgebra-

Proposition 2. 2 Suppose $\{V_i\}$ is a collection of Sub-Hom-coassociative coalgebras of V where V is a Hom-coassociative coalgebra, then $\sum V_i$ is also a Sub-Hom-coassociative coalgebra of V.

Proof Obviously, $\sum V_i$ is a subspace of V. We have

$$\Delta (\sum V_i) = \sum \Delta (V_i) \subseteq \sum (V_i \otimes V_i) \subseteq \sum V_i$$

$$\otimes \sum V_i \text{ and } U(\sum V_i) = \sum U(V_i) \subseteq \sum V_i.$$

So $\sum V_i$ is also a Sub-Hom-coassociative coalgebra of V.

Proposition 2.3 Assume V is a Hom-coassociative coalgebra and V_1 is a Sub-Hom-coassociative coalgebra of V, then the inclusion map i: $V_1 \rightarrow V$ must be a homomorphism of Hom-coassociative coalgebras and Ker^{i} is exactly V_1^{\perp} .

Proof It's easy to check that the inclusion map $i \ V_1 \rightarrow V$ is a homomorphism of Hom-coassociative coalgebras.

For any $v_1^* \in V_1^{\perp}$, $v_1 \in V_1$, $\langle i^* (v_1^*), v_1 \rangle = \langle v_1^*, i(v_1) \rangle = \langle v_1^*, v_1 \rangle = 0$, So $i^* (v_1^*) = 0$, i. e. $v_1^* \in \operatorname{Ker}^i$, thus $V_1^{\perp} \subseteq \operatorname{Ker}^i$.

For any $v^* \in \operatorname{Ker}^{\hat{i}}$, $v_1 \in V_1$, $\langle i^* (v^*), v_1 \rangle = \langle v^*, i(v_1) \rangle = \langle v^*, v_1 \rangle = 0$, So $v^* \in V_1^{\perp}$ i. e. $\operatorname{Ker}^{\hat{i}} \subseteq V_1^{\perp}$. Therefore $\operatorname{Ker}^{\hat{i}} = V_1^{\perp}$.

Theorem 2.1 Let V be a Hom-coassociative coalgebra, then

(I) If $V_1 \subseteq V$ is a Sub-Hom-coassociative coalgebra, then $V_1^{\perp} \subseteq V$ is an ideal of V.

(II) Suppose $I \subseteq V^*$ is an ideal, then $I^{\perp} \subseteq V$ is a Sub–Hom–coassociative coalgebra of V.

(III) Suppose J is a subspace of V, then J is a Sub-Hom-coassociative coalgebra of V if and only if J^{\perp} 二 广西科学 2008年5月 第 15卷第 2期

V is an ideal of V.

Proof (I) Following Proposition 2. 3, making the inclusion map $i: V_1 \rightarrow V$, then $V_1^{\perp} = \operatorname{Ker}^{i}$. Clearly, $V_1^{\perp} \subseteq V^{\dagger}$ is an ideal of V^{\dagger} .

(II) First, we verify $\Delta(x) \in I^{\perp} \otimes I^{\perp}$ for any $x \in I^{\perp}$ by using the method of contradiction. Let $\Delta(x) = \sum_{i=1}^{m} x_i \otimes y_i$, suppose $x_1 \in I^{\perp}$, then there is $\in I$ s. t. $\langle e, x_1 \rangle \neq 0$. Without loss of generality, assume $\{y_i\}$ is linearly independent and $\{y_i\}$ is the dual system of $\{y_i\}$, i. e.

 $\langle y_i^*, y_j \rangle = \begin{cases} 1, i = j, \\ 0, i \neq j. \end{cases}$

Let $y_1^* = f \in V^*$, since $I \subseteq V^*$ is an ideal, then $ef \in I$, $0 = \langle ef, x \rangle = \langle \Delta^* (e \otimes f), x \rangle = \langle e \otimes f, \Delta(x) \rangle$ $= \sum_{i} \langle e \otimes f, x_i \otimes y_i \rangle = \sum_{i} \langle e, x_i \rangle \langle f, y_i \rangle = \langle e, x_i \rangle \langle y_1^*, y_1 \rangle = \langle e, x_1 \rangle,$

a contradiction. Therefore $\Delta(x) \in I^{\perp} \otimes I^{\perp}$, i. e. $\Delta(I^{\perp})$ $\subseteq I^{\perp} \otimes I^{\perp}$.

For any $x \in I^{\perp}$, $e \in I \subseteq I^{\circ}$, $\langle e, U(x) \rangle = \langle U^{\circ} e, x \rangle = U^{\circ} e(x) = 0$, So $U(x) \in I^{\perp}$ i. e. $U(I^{\perp}) \subseteq I^{\perp}$. Therefore $I^{\perp} \subseteq I^{\perp}$ is a Sub–Hom–coassociative coalgebra of I^{\perp} .

(III) According to the results of (I) and (II), we can easily get (III).

Theorem 2. 2 Assume (V, Δ, U, X) is a Hom-coassociative coalgebra, $(V^{\dagger}, \Delta^{*}, U^{*}, X)$ is the dual Hom-associative algebra of V, W is a Sub-Hom-coassociative coalgebra of V. If $U^{\dagger}(W^{\perp}) \subseteq W^{\perp}$, then $V^{\dagger}/W^{\perp} \cong W^{\dagger}$ is Hom-associative algebras.

Proof By Theorem 2. 1, W^{\perp} is an ideal of V^{\dagger} . Making the inclusion map $i \ W \rightarrow V$, According to Proposition 1. 1 and Proposition 2. 3, V^{\dagger} / W^{\perp} is a Hom-associative algebra and $\operatorname{Keri}^{\dagger} = W^{\perp} = \operatorname{Ker}^{\mathsf{C}}$ where V^{\dagger} / W^{\perp} is a natural map. Therefore $V^{\dagger} / W^{\perp} \cong V^{\dagger}$ is Hom-associative algebras.

Proposition 2. 4^[3] Suppose V is a vector space with subspaces $\{V^i\}$, U, W. Let $\{X^i\}$ be subspaces of V^* . Then

$$(i) \cap V_i^{\perp} = \left(\sum V_i \right)^{\perp},$$

$$(ii) U^{\perp} + W^{\perp} = (U \cap W)^{\perp},$$

$$(iii) \cap X_i^{\perp} = \sum_i X_i^{\perp}$$
.

Theorem 2. 3 The intersection of Sub-Hom-coassociative coalgebras is again a Sub-Hom-coassociative coalgebra.

Proof Suppose $\{V_i\}$ is a collection of Sub-Hom-coassociative coalgebras of a Hom-coassociative coalgebra V. By Theorem 2. $1(I_-)$ we know V_i^{\perp} is an ideal of V_i^{\dagger} , so $\sum_i V_i^{\perp}$ is also an ideal. By Theorem 2. $1(II_-)$, we get $(\sum_i V_i^{\perp})^{\perp}$ is a Sub-Hom-coassociative coalgebra of V. But according to Proposition 2. 4, we have $(\sum_i V_i^{\perp})^{\perp} = \bigcap_i V_i^{\perp} = \bigcap_i V_i$, therefore $\bigcap_i V_i$ is again a Sub-Hom-coassociative coalgebra.

References

[1] Makhlouf A, Silvestrov S D. Hom-algebra structures [J/

- OL]. Lie Theory Appl, 2006, 10 1–11. http://arxiv.org/math/0609501v3.
- [2] Montgomery S. Hopf algebras and their actions on rings
 [C]. United States AMS Regional Conference Series in Mathematics, 1993.
- [3] Sweedler M. E. Hopf Algebras [M]. New York Benjamin, 1969.

(责任编辑: 尹 闯)

(上接第 10额 Continue from page 108)

- [14] Young-Gheel Baik, Feng Yanquan, Hyo-Seob Sim. The normality of Cayley graphs of finite abelian n groups with valency 5[J]. Systems Sci Mth Sci, 2000, 13 425-431.
- [15] Fang X G, Li C H, Wang J, et al. On cubic normal Cayley graphs of finite simple groups [J]. Discrete Math, 2002, 244 67–75.
- [16] Xu S J, Fang X G, Wang J et al. On cubic s-Arctransitive Cayley graphs of finite simple groups [J]. European J Combin, 2005, 26 133-143.
- [17] Xu S J, Fang X G, Wang J, et al. 5-Arc transitive cubic Cayley graphs on finite simple groups [J]. European J Combin, 2007, 28 1023-1036.
- [18] 徐明曜.有限群导引(上,下册)[M].北京:科学出版

- 社,1999.
- [19] 张远达.有限群构造(上册)[M].北京:科学出版社,
- [20] Biggs N. Algebraic graph theory [M]. Second Edition-Cambridge UP. Cambridge University Press, 1993.
- [21] Babai L Isomorphism problem for a class of point-symmetric structures [J]. Acta Math Acad Sci Hungar, 1977, 29 329-336.
- [22] Gorenstein D. Finite simple groups [M]. New York Plenum Press, 1982.
- [23] Gross F. Conjugacy of odd order hall subgroups[J]. Bull London Math Soc, 1987, 19 311–319.

(责任编辑: 尹 闯)