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Abstract Some new inequalities on the upper bounds for vertex Folkman numbers are provenin this

paper. In particular, we prove the following result by constructive method for any real number r

that satisfies O0<r <_; log23- _?1, there are N (r)> 0 and ¢(r)> O such that F\ (k,k; kv 1= c(r) (k

k- 1)-

Fo(kkike 1< c(r) (k-

o for any & N (r),in which both N(r) and ¢(r) are constants only depending on r.

1
0<r<_210g23—

1)—41‘-1%2( = -r

k= N(r) s

_ 1)7111%2(
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For an undirected, simple graph G, and positive
integersal . ,a, we write G> (a1, ,a) (G> (a1,
L)) if and only if for every vertex (edge) k-
coloring of G, there exists a monochromatic Ks, for
some color £ {1, ,k}.

For positive integers ai, -+ , ax and p> max {ai,
“La ) let

Fr(a, a;p)= (G 6> (@ .a) K/ Gl

Fe(ar ;a0 p)= {G G> (a1, ax), Kil G).

The graphs in Fv (a1, ,a; p) are called vertex
Folkman graphs, and the graphs in Fe (a1, ,a: p)
are called edge Folkman graphs.

In 1970, Folkman'"' showed that for all r,/ and p
> max{r,/} the families Fv(r,l; p) and Fe(r,l; p) are
nonempty. Folkman's method worked only for two
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colors.  Folkmans theorem was generalized to
multicolor case in reference[2, 3 ].

Som eone could ask what is the minimum number
of vertices in a vertex or edge Folkman graph, which
leads to the notion of Folkman numbers.

For positive integers ai, - , a and p> max{a1,
- ,a}, thevertex (edge) Folkman number is defined
as

E (a, ,a;p)= mn{l V(G)|: G> (a1, ,
a)',KfL Gy,

E(a, ,a; p)= min{l V(GQl: 6> (@, .a),
K G

Among all vertex Folkman numbers, Fv (k,k; k+
1) seems more interesting for many researchers. In
this paper we will discuss the upper bound for it and
get new upper bounds for vertex Folkman numbers

based on composition of two graphs.
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1 Some known knowledges
Theorem 1*  For & no less than 3, we have
Floke b= Lr oJ-2
In reference[5 ], Fv (k,k; kv 13<

Lo (e 1)d

- 2 was proved. Theorem 1 in

reference [4 ] was proved earlier than this inequality.
reference [ 4] was in Russian and was not well
know n.

Theorem 2° For all integer P no less than 2, we
have

Fo(pr Lpr Lpr 2= (pr DE(p.pip+ 1),

Corollary 1! For integer p no less than 4, we
have F (p,p; p+ 1= 1. 46p .

We improved Theorem 2 as following.

Theorem 3" For integer k no less than 2, we
have

Fo(2%k, 2%k; 2 1< kFv (2%k— 1,2%— 1; 2k)+ 3k
+ L

Theorem 4 Suppose k is an integer no less than
2, S Fo(2%.2%:; 2%+ 1), 8(H)= F (2%, 2%:; 2%+ 1).
Let {vi)J& H, 4= V(H)\{v1}, G be the subgraph of
H induced by 4 and & which is the subgraph of H
induced by V( H)\ ({vi}]J A4). Suppose both G and
G are Kx-ree- If x is the order of the maximum
isomorphic induced subgraphs of G and &, then we
have

Fo(2% 1,2 1 2% 2= (k+ DF (2%, 2% 2%
+ 1)- x+ 3+ 2

2 Upper bounds for vertex Folkman numbers
based on composition

We define the composition of simple graph of G,
H and G[ H], as follow: its vertex set is V(G)
V(H):in G[H], thereis edge connecting different
vertex (u,v) and (u’,v/), if and only if wE E(H),
orv=v' and € E(G)™.
It is easy to know that §G[H )= & G)° & H).
Theorem S  Let ai, -, a, b, , b, p,q be
positive integers, max {a1,--+ , & ¥< p , max {b1, -+ , b}
< g, then
Fo(abr - ab pgv < F (a1, ae pr 1)°
Fo(br, b g 1).
Proof Suppose & Fv (a1, ,a; p+ 1),8 G)=
m= F(a, a;p+ 1), and Hc Fo (b1, ,b; g+ 1),
& H)= m= F. (b1, bi; ¢+ 1). Since G is Kp 1free
and H is K4 1{ree, we know G[H | is Kpy 1dree.
Now we will prove G[H 1> (aib1,+ ,abi)".
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Suppose V (G)= {vi,--
) / / /

Let H be isomorphic to H,V( H )= {vi ,,
Vnzl}, and for different l',je {L-,m}, vl,wle E
(H'), if and only if wvE V( H).

Now, we give G[ H | any vertex k—oloring, i e. ,

,vo, } and V( H)= {1,

we color any vertex in G[H ] with a color among
{ color s {1, K} ).
For any £ {1, ,n2}, suppose Vj= {(urw)|

i m}, SoV(G[H])= gIV,-.

For any j& {1,----- ,nm2}, from the definition of
G[H ], we know the subgraph of G[H | induced by
Vi is isomorphic to G- Therefore for any & {1, )
m}, from G> (a,-, &) we know there is
monoch romatic Ka_ in the subgraph of G[H | induced
by V; for some color x& {1,------ , k.

more than one such x 5, we can choose any one

If there are

among them. Let x= f(j). Now we give H' avertex
k-coloring, forany & {1,----- ,m}, we coloer’ with

color f(j)-
Since that H' is isomorphic to H, and H> (b1,

v . . .
- ,bk) ", there is monochromatic Ks  in H for some

color y [1,----- k}.

From the program of the vertex coloring of graph
H', we know this means that for the vertex coloring
of G[ H], there are by ones among { 1,-+--- ,m}, say
{Z1, e .z}, such that for any j€ {z1,:- .2 },
there are @y vertices in V; that induce a complete
subgraph in G[ H ] of color y. So we find a complete
subgraph of G [H ] in color y on abr vertices
Therefore we prove G| HP> (aibi ;- achx)".

We know the order of G| H | is Fo (a1 ;- , a5 p+
1)° F(bi, ,b;qr 1), so we have

F (ab, ,atbs pg+t < Fv (a1, ,ak; pr 1)°
E (b, bygr 1).

Corollary 2 Leta,b be positive integers no less
than 2, & p.b= ¢, then

F (ab.ab; pg+ 1= F(a,a; p+ 1)F (b.b; g+
D).

In particular, from £ (2,2; 3)= 5 we have the
following corollary that will be used later.

Corollary 3
than 2, then

F(2a,2a; 20+ U< 5F(a,a;a+ 1).

Let a be a positive integer no less

3 Constructive upper bound for vertex
Folkman number F, ( 2%+ 1, 2%+ 1; 2+ 2)

Theorem 6  Suppose k is an integer no less than
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w = |

4, f (k)= [ ] ,then we have

Fo(2+ 1,2 1 2%+ 2= [2f (k)+ 11FE (k. ks k
+ D+ 36 (k+ Lkt Lk 2+ k& 2f (k).

Proof Suppose < F. (k. k; kv 1),8(S)= n= F
(kiks ke 1), V(S)= {si; .9}, 7€ F(k+ Lkt Lk
+ 2),8T)= F (ke Lk+ Lk 2).

We will construct a graph G to prove the
inequality in theorem 6.

Let V(G)= V(G U V(GJ ¥ ( So)UU V(T)
U rc).

From 8(8)= n= E (k,k k+ 1), we know that
there is V (A)C V' (S) \ {s1} such that both the
subgraph of S induced by V(4) and the subgraph of §
induced by V(B)= V(S)\({s1lJ V(4)) are Ki free.
We might suppose V(A4)= {2, .5} and V(B)=
{sip 1,7+ ,5 ) as well.

Let I= Zw= {i modf (k)| & &= f(k)).

For G, V(G)=U V(AU V(B)J {w(i)
SV {ul/(i)‘ £ I} ,in which forany & I,V (A1)=
(e (i), s (i)}, and V(Bi)= {unp 1(i) -+ sun (i)} -

E(G)= {(w (i).u: (i) 9s€ E(S). € ILE y

<=l L,j.E[( 1), where

¥

Ev(D)= {(w (i)»u (i) s1€ E(S).E L+ 1
< £ n},

Ex(D)= {(ur (i), (i 1) 9s€ E(S),E 1.2
<= m),

Es()= {(w(i),u:(+ 1)) ss€ E(S),E I,m

+ KyEn, = m).
For any i satisfies ¥ %< f (k),let j be i mod
f(k),we set

V(S 1)= {w(j) £ 5= n
V(S)= {w () n+ ﬁ)ﬁnu {u= (+ 1) 2=
=mlJ (w' ()}

We will construct G similarly. Let I= {i mod

C2f (k)| £ &= 27 (k) ) Set vie)=U v

(4 Y, vBU wl€ 1Y w Ol € 1}, in
which V(41)= {w (i), ,un (i)} and V(Bz)— {1
(i), ,w (i)} for any & I

Let G2 be isomorphic to Gi, i. e., there is a
bijection g such that for any i satisfies ¥ %< f (k), let
j bei modf (k) andj, be (#+ f(k))mod(2f (k)).,

(uy(j))— w ( ) £ 5= n

g’ (j))= (J )

and (g(u) .g(v))E E(@) if and only if (u.v)E
E(G).

S A

)

20084 8H % 15%K% 3%

For any i satisfies 2f (k)+ ¥ & 4f (k), let

V(S)=g(V(§-7m)).

We define U to be the subgraph of G induced by
V(U) forany V(U V(G).

For any i satisfies 4f (k) , we have that S
is isomorphic to S. Let So be isomorphic to S.

For any i satisfies K< %= 3, let the subgraph of
graph G induced by V( T') be isomophic to T-

Let the subgraph of graph G induced by V(C) be

isomorphic to Kk, the complete graph of order £.

Let Ei= B(GI) E(GU E(UU BT
E(C),

3 2
E= E(Ts.CJ EY 1. 9UU E(G.T).

In any part in E2= E(T3,C)J E(LIJ317?,S01_J L,-:JZ|
E(G,T),E(U,U)= {(u,u)l vc U,u'€ U'}.

Suppose ¥ 7= 2f (k). 2f (k)+ ¥ j= 4f (k),
and at least one of them is odd integer, then we have
at least 3[f (k) ]2 choices to take (5, 5), in which §
C G, G

w = |

From f (k)= { ] we have 3[f (k) = k.

We take just k choices from them, and for any

(8,S) among them, we takea vertex w from C and
add edges between w and SU S above Here every
vertex in C is used for and only for one time. Forany
(S:,S) we choose above, we also add edgesin {(u,v)
e SE § ). Let the set of all edges added here be
Es. Let E(G)= EU EUJ Es.

It is not difficult to know that the order of graph
Gis

[2f (k¢ 1]E (kb ki D+ 368 (B 1Lk 1kt
2+ k= 2f (k).

Now we will prove that graph G is Ka 2 free.

If there is a complete subgraph Co of order 2+ 2
in G, from the construction of G we know ¥ (Co)
must bein V(GJ V(G)\J V(C).

Suppose x1= | V(Co\) V(O)l ,x2= | V(Co ¥
(Gl sand x3= [ V(CN V()]

We know the clique numbers of C, Gi and G are
allk. Therefore we have x= 2 for any & {1, 2, 3}.

Let € V(Cof) V(G) and & V(Co)) V(@)-
From the construction of G, we know that there are at
most 3 common neighbors of u and v in V(C). So 2<
x¥= 3. Ifx1= 2, then x2= x3= k, and we know it is
im possible from the construction of G If x1= 3, then
from 3+ k— & k- 1= 2%+ 1< 2k 2 we know that
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either x2 or x3 equals k. We might suppose x2= k as
well. From the construction of G, x1= 3 and x2= k,
we have x3= 0, which contradicts with xz= 2.

From all above we have graph G is K2« 2-{ree.

Now, we give G any red-blue vertex coloring, i
e., we color every vertex inG with red or blue. To
finish the proof, we need only to prove G> (2& 1, 2%
+ 1)" now.

Suppose there is not monochromatic complete
subgraph of order 2+ 1in G.

From S F» (k,k; k& 1) and § is isomorphic to S
we know S> (k.k)" for any i satisfies 6< &= 4f (k).
Similarly we have Tr> (k+ 1,k+ 1) forany & {1,2,
3}

Because So> (k,k)",
Kk in @ as well. From the construction of graph G,

we may suppose thereis red

and there is not monochromatic Kz 1 in G, we have
there is blue Ki 1in T; for any £ {1,2,3}. So there
is red Kk in Si for any i satisfies €< &= 4f (k).

Since there is blue K# 1in T3, we know there is
at least one vertex of color red in C.

Suppose this vertex be w in C, and its set of
neighbors in V(Gi)J V(G) is V(S)J V(S).
the construction of graph G we know the subgraph
vsiJ vis)\J
Therefore G> (2% 1,2+ 1) .

From

induced by
Ko 1.

{w} must contain red

4 New upper bound for vertex Folkman number
Fo(k.,k k+ 1)

Theorem 7 Suppose 0 < r <— 10g23 i, for
7 2
any &= ao= [ 211_,_ 2_3_3 ] we have
1
Bk kk D< o(k- D** """ in which o
B (s 1)
= max{ i lllH- 1 ‘aﬁﬁ 2a0}.
(l ) og)z 1)-
Proof It is not difficult to see that Fv(k, k; k+
1 -y . .
= ok 1)410g2(k DTN < B 2a0. Now we will
prove the inequality for 2ae< A&~ 4.
7 2
From ao= [ 27{4_ 2 3 ] and 0<r<
3
_élog;— _i , we have

1 | | T B

Therefore we have ae= 25. Suppose &= ao. So k
= 25.

Case 1 For 2a0+ ¥ 2% 4dao, wehave

F (2%, 2%; 2+ 1)y 5F (k,k; k+ 1)< 500 (k-

1)—110g2(k7 - r

From & 25and O0<r<— 10g23— — wehave

4

_— 1 3 1 e

1
F k- 1> o (‘2‘*23 4= 272 04

:—2_3 Q4= 4 2> 5.

1)1}103;2(2/(* 1)7r> G)(Qk 2)711lug2(2k7 2)-r

YAt D= rand 7 k= 1> 5

1)71 ]og2 (%= 1)-r

From o (2k-
- B a0 k- 1(k-
wehave Fr (2%, 2 2 1< oo( 2%-

Case 2 For 2ao+r ¥ 2+ ¥ 4dao, we have as
K 2a0- 1.

From &= 25 and f (k)= [ _];_I,we have
2f(k)=2[ _]§—|<2 —]3€+ 2<3 —g:
<k

Because 2f (k) <k, Fi(k,k k& 12> 2% and (k-

1)_‘1‘1052(k_ R k_‘l‘hgzk_r,from theorem 6 we have
F(2%+ 1,2+ 1, 2% 25< [2f(k)+ 1]F (k,k;k
+ Vir 3R (k0 Lkt L 20 k& 27 (k).
F(2%+ 1,2+ 1, 2% 25< [2f(k)+ 1]F (k,k;k
+ Vi 3R ( L+ L 29 k& k,
FE(2%+ 1,2+ 1, 2 2% [2f (k)
+ i+ 3R ( L+ L 2),
F(2%+ 1,2+ 1, 2%+ 2)}< [2f (k)+ 2] (k-
—log, (k- 1)- . &Ok%bgzk—r,
Fo(2+ 1, 2%+ 15 2+ 2)<< [2f ((k)+ 5]

k4log2k—

v 20F (k. ks k

1)

From &= ao= [ ﬁ,r_ 2 3 ] we have
3
k= L — SO{ZT' 23 } = 7,
A2 3 3
3
and we have
) 2 3 — k
y4- " > - n
2 =73 k+ 7 3+ 7>

)
L
wl

k]+ 5.

L, — k
From 24 k>2[ —3]+ 5= 2F(k)+ 5

and o (%)= T2 P g
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Lo e 1) r
#7200 B 4. We can prove the

Fo(2 1,2 1; 2% 255 oo (23 1,

We have proved Fv (k. ks k+ 1)< o (k-
[1]

inequality for any 2 ao by induction similarly.

From all above we complete the proof.

(2]

We may give theorem 7 a simple form as

following.

_i, there are N ()> 0 and ¢(7)> 0 such that

proven in reference[9] independently.

1 (3]
Theorem 8 For any r satisfies 0<r < log 3-

(4]

1
Fo(k b ke < e(r) (k= 1)abet Dmr)
for any &= N (r), in which both N (r) and ¢(r) are

constants only depending on 7.

(51

[6]
Remark Theorem 5 in this paper was also

[7]

An earlier version of this paper was submitted to

Journal of Graph Theory in Dec 2006, and was

References

Folkman J Graphs with monochromatic complete
subgraphs in every edge coloring [J]. SIAM J Appl
Math, 1970(18): 19-24.

Nesetril Jand Rodl V. The Ramsey property for graphs
with Forbidden complete subgraphs [ J]- J Combin
Theory Ser B, 1976(20): 243-249.

Graham R L, Rothschild B L, Spencer J H. Ramsey
theory [M ] New York Wiley, 1980.

Nenov N. Application of the corona—product of two
graphs in Ramsey theory [J]. Annuaire Univ Sofia Fac
Math Inform, 1985, 79 349-355.

Luczak T, Ruci nski A, Urbanski S. On minimal
Folkman graphs[J] Discrete Math, 2001,236 245-262
Nenov N. Extremal problems of graph colonngs [M |.
Sofia Dr Sa Thesis, Sofia Univ , 2005.

Xu Xiaodong, Luo Haipeng, Su Wenlong, et al- New
mequalities on vertex Folkman numbers [ J]. Guangxi

Sciences, 2000, 13( 4): 249-252.

[8] Bondy J A, Murty U S R. Graph theory and applications
[M]. Londor Macmillan, 1976.

Kolev N. A multiplicative inequality for vertex Folkman

rejected at Feb 2008, mainly for the results in
reference[10] gotten by non—constructive methods are

[9]
much better than theorem 8 in this paper. Thanks to numbers [J]. Discrete Mathematics, article in press,
2008, 308( 8): 42634266

Dudek A and Rodl V. New upper bound on vertex

Folkman numbers [J] To Appear in Lecture Notes in

Computer Science 4957,2008 473-478.

the referees who gave many advices on improving the
writing of that version. Fven so, we submit this paper [10]
here after some necessary changes, mainly for our
methods are constructive The inequalities proven in
this paper can be used to give upper bounds for vertex

Folkman numbers,in particular, those small ones.

(£3#% 210 Continue from page 210)
bounds for classical Ramsey numbers R (5, 13) and R (5,

14) [ J]. Applied Mathematics Letters, 1999 ( 12): 121-

[1] Bondy J A,Murty U S R. Graph theory with app- 122.
licaions[M ]. New York The Macmillan Press Ltd,
1976.

Radzszow ski S P. Small Ramsey numbers[J]. The

Electronic Journal of Combinatorics, 2004, DSHO 1-48.

[7] Luo Haipeng, Su Wenlong,Shen Yunqgiu- New low er
bounds of ten classical Ramsey numbers[ J]. Australasian
Journal of Combinatorics,2001(24): 81-90.

[8] Luo Haipeng, Su Wenlong, Li Zhengchong. The

[3] s , . Ramsey R(q.q,..., . )
properties of self-complementary graphs and new lower
q) [J]. A ,1999,29(5): 408-413. . :
bounds for diagonal Ramsey numbers [ J]. Australasian
[4] s , Ramsey R(4,12) ,R(5, . .
Journal of Combinatorics,2002,25 103-116.
11)  R(5,12) [J1]- , 1997, 42( 22): : i
2460 [9] Luo Haipeng, Su Wenlong,Shen Yunqiu. New lower
(5] Ra R(6. 12) bounds for two multicolor classical Ram sey numbers|[J].
’ ’ ey e Radovl Matematickl, 2004, 13 1521.
R(6,14)  R(6,15) [J]. , 1998, 43

(12): 1336-1337.

[6] Su Wenlong, Luo Haipeng, Shen Yungiu- New low er

S A 20084F 8H % 15E% 3 215



