On the Uniqueness of Generalized Eigenmatrices 广义特征矩阵的唯一性

LI Da-lin¹, HU ANG Xue yan² 李大林¹,黄雪燕²

(1. Department of Basic Courses, Liuzhou Vocational Institute of Technology, Liuzhou, Guangxi, 545006, China; 2. Department of Mathematics and Computer Science, Qinzhou College, Qinzhou, Guangxi, 535000, China)

(1.柳州职业技术学院基础部,广西柳州 545006, 2.钦州学院数学与计算机科学系,广西钦州535000)

Abstract The general form of the maximal Jordan chains of the defective matrix is getten with the notation of depths of the generalized eigenvectors. For two invertible matrices P and S such that $PJP^{-1} = SJS^{-1}$, we find that there exists a block matrix H with upper triangular Toeplitz block matrices laying on its principal block diagonal such that S = PH, which allows to prove the uniqueness of generalized eigenmatrices.

Key words matrix, generalized eigenmatrix, Jordan canonical form, Jordan chain, Toeplitz block submatrix

摘要: 利用广义特征向量的深度,获得极大若当链的一般形式,并推导出在满足 $PJP^{-1}=SJS^{-1}$ 的 2个可逆矩阵 P和 S之间存在一个主对角线上具有上三角分块 Toeplitz子阵的可逆矩阵 H,使得 S=PH,从而证明广义特征矩阵的唯一性.

关键词: 矩阵 广义特征矩阵 若当标准型 若当链 Toeplitz子阵 中图法分类号: 0121.21 文献标识码: A 文章编号: 1005-9164(2008)03-0228-03

Jordan canonical forms and Jordan chains of defective matrices are very important in both pure and applied mathematics. There are a number of publications about them recently, especially on the research of M-matrix^[1]. One of their classical applications is to express the fundamental solutions of a system of differential equations with constant coefficients^[2]. But the Jordan chains are difficult to be obtained. The concept of eigenmatrices was given in reference [3-6] to enhance the computation efficiency of matrix functions and their integrals, which enables us to avoid the computation of Jordan chains. The existence of the generalized eigenmatrices has been proved with a linear system whose coefficient matrix is a generalized

Vandermonde matrix. In this paper we prove its uniqueness with the notation of depths of the generalized eigenvectors^[1,7].

1 Basic concepts

In this paper, we always assume that A is a defective complex matrix of order n with the distinct eigenvalues $\lambda_1, \cdots, \lambda_d$. We denote the block diagonal matrix $\begin{bmatrix} A_1 \\ A \end{bmatrix}^{[2]}$ by $A_1 \oplus A_2$. With this notation, the Jordan canonical form of A is $J = J_{n_1}(\lambda_1) \oplus \cdots \oplus J_{n_i(t(i))}(\lambda_i)$, where $J_{n_i(j)}(\lambda_i)$ is a Jordan block of order n(j) with diagonal elements λ_i , super-diagonal elements 1, and the others $0 \cdot \sum_{j=1}^{t(j)} n(j) = n$ is the algebraic multiplicity of λ_i . The t(i) Jordan blocks corresponding to λ_i in J are presented in decreasing (nonincreasing) order with the largest block first, then the next largest, and so

收稿日期: 2007-09-21

作者简介: 李大林 (1968-), 男,副教授,硕士,主要从事矩阵论的研究工作。

^{*} 广西教育厅科研项目 (200707 LZ259)资助

on, i. e.,
$$n_i(1) \geqslant \cdots \geqslant n_i(j) \geqslant \cdots \geqslant n_i(t(i))$$
.

Let $N_{n_i(j)}$ be the nilpotent matrix obtained from $J_{n_i(j)}(\lambda_i)$ by replacing the diagonal λ_i by zeros, then

$$N_{n_{i}(j)}^{k} = \begin{bmatrix} 0 & \cdots & 1 & & \\ & \ddots & & \ddots & \\ & & 0 & \cdots & 1 \\ & & & \ddots & \vdots \\ & & & 0 \end{bmatrix}, k = 2, \cdots, n_{i}(j)$$

- 1.

Define $N_{n_i(I)}^0$ to be the identity matrix of order $n^i(j)$. Denote that $N_{n_i} = N_{n_i(1)} \oplus N_{n_i(2)} \oplus \cdots \oplus N_{n_i(I(i))}$, and let $N_i = O \oplus \cdots \oplus N_{n_i} \oplus \cdots \oplus O$ be a block matrix with the same partition as J, in which all blocks but the i-th are non-zero.

Definition 1^[3] Let P be an invertible matrix such that $A = PJP^{-1}$. We call $A_i^{(k)} = PN_i^kP^{-1}$ the generalized eigenmatrix of A corresponding to λ_i , where $k = 0, 1, \dots, n_i - 1$.

We denote by null $(A - \lambda_i I)^{\frac{n}{i}(1)}$ the generalized eigenspace corresponding to λ_i , that is,

$$\text{null}(A - \lambda_i I)^{n_i(1)} = \{ T A - \lambda_i I \}^{n_i(1)} T = O \}.$$

Let T_1, T_2, \cdots, T_m be a Jordan chain corresponding $to\lambda_i$, that is,

$$AT_1 = \lambda_i T_1, AT_2 = \lambda_i T_2 + T_1, \cdots, AT_m = \lambda_i T_m + T_{m-1}.$$

The leading vector T_i is an eigenvector, and the others are generalized eigenvectors I_i, T_i, T_i . If the linear system $(A - \lambda_i I)X = T_m$ is inconsistent, then the Jordan chain T_i, T_2, \cdots, T_m is called maximal. For a maximal Jordan chain T_i, T_2, \cdots, T_m , the depths of vectors T_i, T_2, \cdots, T_m are defined as $m - 1, m - 2, \cdots, 0$ respectively. We denote by $dp(T_i)$ the depth of $T_i^{[1,7]}$. For a given vector T_i null $(A - \lambda_i I)^{n_i(1)}, dp(T_i) = j$ if and only if the linear system $(A - \lambda_i I)^{j-1}X = T$ is consistent, while $(A - \lambda_i I)^j X = T$ is inconsistent.

Suppose that

$$P = (P_1, P_2, \cdots, P_d), P_i = (P_{i,1}, P_{i,2}, \cdots, P_{i,t(i)}),$$

$$P_{i,j} = (\mathsf{T}_1(i,j), \mathsf{T}_2(i,j), \cdots, \mathsf{T}_{r_i(j)}(i,j)),$$
where $j = 1, \cdots, t(i)$, and $\mathsf{T}_1(i,j), \mathsf{T}_2(i,j), \cdots, \mathsf{T}_{r_i(j)}(i,j)$ is a maximal Jordan chain corresponding to $J_{n_i(j)}(\lambda_i)$. The length of this chain is just equal to $n_i(j)$, the order of $J_{n_i(j)}(\lambda_i)$, and the depth of the eigenvector $\mathsf{T}_1(i,j)$ is equal to $n_i(j) - 1$. When j runs from 1 to $t(i), \mathsf{T}_1(i,j), \mathsf{T}_2(i,j), \cdots, \mathsf{T}_{n_i(j)}(i,j)$ form a

Jordan base of $\operatorname{null}(A - \lambda_i I)^{n_i(1)}$. Thus P_i is an $n \times n_i$ matrix constituted by a Jordan basis of $\operatorname{null}(A - \lambda_i I)^{n_i(1)}$.

Denote the total number of Jordan blocks $J_{n_i(j)}(\lambda_i)$ in $J_{n_i}(\lambda_i)$ of all sizes $n_i(j) \geqslant m$ by $\mathbb{Q}(m)$. That is, if $n_i(1) \geqslant \cdots \geqslant n_i(a) \geqslant m > n_i(a+1)$, then $\mathbb{Q}(m) = a$.

2 Main results

Lemma 1^[1,7] For complex numbers a_1, a_2, \cdots, a_m , and vectors $T_1, T_2, \cdots, T_m \in \text{null}(A - \lambda_i)^{n_i(1)}$, we have

$$dp \sum_{j=1}^{m} T_j T_j \gg \min\{dp(T_j): j = 1, 2, \cdots, m\},$$
(1)

where $\sum_{j=1}^{m} a_j \not \exists \neq O$, and for $\not\exists_i$, $\not\exists_i \in \text{null}(A - \lambda_i I)^{n_i(1)}$, we have the strict inequality

$$dp(\mathcal{T}_{u}) \neq dp(\mathcal{T}_{u}) \Rightarrow dp(\mathcal{T}_{u} + \mathcal{T}) = \min\{dp(\mathcal{T}_{u}), dp(\mathcal{T}_{u})\}.$$
 (2)

Proposition 1 Let ${}^{a_{1}}(i,j)$, ${}^{a_{2}}(i,j)$,..., ${}^{a_{n_{i}(j)}}(i,j)$ be the general form of a maximal Jordan chain with length $n_{i}(j)$ corresponding to λ_{i} . Then

$$a(i,j) = \sum_{k=1}^{Q_{n,(j)-k+1}} \sum_{l=1}^{k} b_{l}^{(h,j)} \text{Total}(i,h), k = 1, \dots, n(j),$$
(3)

where $b^{(h,j)}$ are complex numbers, and

$$\sum_{h=O(n,(j)+1)+1}^{O(n,(j))} b_1^{(h,j)} \operatorname{T}_1(i,h) \neq O.$$

Proof Since $T_i(i,h)$,..., $T_{k+1-l}(i,h)$,..., $T_{n_i(h)}(i,h)$ are the maximal Jordan chain corresponding to $J_{n_i(h)}(\lambda_i)$, we have

$$dp(\mathbb{T}_{+} \downarrow l(i,h)) = n_i(h) - (k+1-l) > n_i(j) - k.$$

Now we prove the Proposition 1 by induction on k. If k = 1, then $dp(^{a_1}(i,j)) = n_i(j) - 1$, which implies that $^{a_1}(i,j)$ is a linear combination of $^{T_1}(i,1)$, $^{T_1}(i,2),\cdots, ^{T_n}(i,0,n(j))$, i. e.,

$$a_{l}(i,j) = \sum_{h=1}^{Q_{n_{j}}(j)} b^{(h,j)} T(i,h).$$
 (4)

It follows from formulae (1) that

$$\sum_{h=O(n_{i}(j)+1)+1}^{O(n_{i}(j))} b_{1}^{h,j} T_{1}(i,h) \neq O, \text{ by the fact } dp(a_{1}(i,j)) = n(j) - 1.$$

Suppose that
$$a_k(i,j) = \sum_{h=1}^{C(n_i(j)-k+1)}$$
:

$$\sum_{l=1}^{n} b^{(h,j)} T_{k+1-l}(i,h) \text{ holds. Since } (A - \lambda_{i}I) T_{k+2-l} = Q_{n_{i}(j)-k+1}$$

The 1-1, we can easily verify that
$$\sum_{h=1}^{Q_{n_i(j)}-k+1} \sum_{h=1}^{k+1}$$
.

 $\sum_{i=1}^{\kappa} b^{(h,j)} \mathcal{T}_{k+2-l}(i,h) \text{ is a special solution of the linear}$ system $(A - \lambda_i I)X = {}^{q}_{k}(i,j)$. Because $T_{i}(i,h), h =$ $1, \dots, t(i)$, is a fundamental solutions of $(A - \lambda_i I)X$ = O, the general solution of $(A - \lambda_i I)X = {}^{a_k}(i,j)$ is

$$X = \sum_{h=1}^{t(i)} a_h \operatorname{Tr}(i,h) + \sum_{h=1}^{Q_{n,(j)-k+1}} \sum_{l=1}^{k} b^{(h,j)} \operatorname{Tr}_{k+2-l}(i,h)$$

where $\phi, h = 1, \dots, t(i)$, are scalars. Since (A - $\lambda_i I) \mathcal{A}_{k+1}(i,j) = \mathcal{A}_k(i,j)$, we can write

$$\begin{array}{ccc}
a_{k+1}(i,j) &= & \sum_{h=1}^{Q_{n_{i}(j)-k}} b_{k+1}^{(h,1)} T_{1}(i,h) & + \\
& \sum_{h=Q_{n_{i}(j)-k}+1}^{Q_{n_{i}(j)-k}} c'_{h} T_{1}(i,h) &+ & \sum_{h=1}^{Q_{n_{i}(j)-k-1}} \sum_{k=1}^{k} b_{k}^{(h,j)} T_{k+2-l}(i,h).
\end{array}$$

Since $dp(_{k+1}^{a}(i,j)) = n_i(j) - k - 1$ and $dp(_{k+1}^{a}(i,h))$ $< n_i(j) - k - 1 \text{ for } h = \Omega(n_i(j) - k) + 1, \dots, t(i),$ we have $c'_h = 0$ by Lemma 1. Reducing formulae(5), we get the general form of $\frac{q_{+}}{1}(i,j)$, that is

$$Q_{k+1}(i,j) = \sum_{h=1}^{Q_{n_i}(j)-k} \sum_{l=1}^{k+1} b^{(h,j)} T_{k+2-l}(i,h).$$

The proof is complete.

Proposition 2 Let P and S be invertible matrices such that $A = PJP^{-1} = SJS^{-1}$. Then there exists an invertible matrix H such that S = PH with $H = H_1 \oplus$ $H_2 \oplus \cdots \oplus H_d$ is a block matrix with the same partition as J, where $H_i = (H_{h,j})_{t(i) \times t(i)}$ and $H_{h,j}$ is the h - th block in the j - th block column of H_i . If $n_i(j) =$ $n_i(h)$, then $H_{h,j}$ is an upper triangular Toeplitz matrix, i.e.,

$$H_{h,j} = \begin{bmatrix} b_{1}^{(h,j)} & b_{2}^{(h,j)} & \cdots & \cdots & b_{n_{i}}^{(h,j)} \\ b_{1}^{(h,j)} & b_{2}^{(h,j)} & \cdots & \cdots \\ & \ddots & \ddots & \vdots \\ & & b_{1}^{(h,j)} & b_{2}^{(h,j)} \\ & & b_{1}^{(h,j)} & b_{1}^{(h,j)} \end{bmatrix}_{n_{i}(h) \times n_{i}(h)}$$
or
$$H_{h,j} = \begin{cases} [O, H_{h,h}]_{n_{i}(h) \times n_{i}(j)}, & \text{if } n_{i}(j) > n_{i}(h), \\ [O, H_{h,h}]_{n_{i}(h) \times n_{i}(j)}, & \text{if } n_{i}(j) < n_{i}(h). \end{cases}$$

Proof Let

$$S = (S_{1}, S_{2}, \dots, S_{d}), S = (S_{1}, S_{12}, \dots, S_{n(i)}),$$

$$S_{i,j} = (a_{1}(i,j), a_{2}(i,j), \dots, a_{n_{l}(j)}(i,j)),$$

where $a_1(i,j), a_2(i,j), \cdots, a_{n_i(j)}(i,j)$ is a maximal Jordan chain with length $n_i(j)$, see formulae (3) and formulae (4).

When j runs from 1 to t(i), the eigenvectors $a_i(i)$, 1), \cdots , $a_1(i,j)$, \cdots , $a_1(i,t(i))$ are obtained by formulae (4). Assume that they are linearly independent, then the column vectors of S_j , i. e., $\frac{a_k(i,j)}{b_k(i,j)}$, $j = 1, 2, \cdots$, $t(i); k = 1, 2, \dots, n_i(j)$, are also linearly independent. Thus the column vectors of S form a Jordan basis of $\operatorname{null}(A - \lambda_i I)^{n_i(1)}$. According to formulae (3) and formulae(4), we have

$$S_{\cdot,j} = \begin{pmatrix} a_{\mathbf{i}}(i,j), \cdots, a_{n_{\mathbf{i}}(j)}(i,j) \end{pmatrix} = \begin{pmatrix} P_{i,1} \cdots, P_{i,t(i)} \end{pmatrix} \begin{pmatrix} H_{\mathbf{i},j}^{\mathsf{T}}, \cdots, H_{t(i),j}^{\mathsf{T}} \end{pmatrix}^{\mathsf{T}} = P_{i} \begin{pmatrix} H_{\mathbf{i},j}^{\mathsf{T}}, \cdots, H_{t(i),j}^{\mathsf{T}} \end{pmatrix}^{\mathsf{T}},$$
 where $\begin{pmatrix} H_{\mathbf{i},j}^{\mathsf{T}}, \cdots, H_{t(i),j}^{\mathsf{T}} \end{pmatrix}^{\mathsf{T}}$ is the j -th block column of H_{i} . Thus

$$S = (S_{.1}, \dots, S_{.t(i)}) = (P_i (H_{1,1}^T, \dots, H_{t(i),1}^T)^T, \dots, P_i (H_{1,t(i)}^T, \dots, H_{t(i),t(i)}^T)^T) = P_i H_i,$$

$$S = (S_1, \dots, S_t) = (P_1, H_1, \dots, P_t, H_t) = (P_1, \dots, P_t, H_t) = (P_1,$$

$$S = (S_1, \dots, S_d) = (P_1 H_1, \dots, P_d H_d) = (P_1, \dots, P_d) (H_1 \bigoplus \dots \bigoplus H_d) = PH.$$

Since S and P are invertible, H is also invertible. The proof is complete.

Theorem 1 With respect to the order of λ_1, \dots , λ_d , the generalized eigenmatrices $A_i^{(k)}$, $i = 1, \dots, d$; k = $0, 1, \dots, n - 1$, are independent of P such that A = PJP^{-1} .

Proof Since $N_{n_i(h)}^K H_{h,j} = H_{h,j} N_{n_i(j)}^{k}$ [2], we can easily verify that

$$HN_{i}^{k} = (H_{\square} \cdots \bigcirc H_{\square} \cdots \bigcirc H_{d}) (O \square \cdots \bigcirc N_{n_{i}}^{k} \cdots \bigcirc O) = H_{i}N_{n_{i}}^{k} = (H_{h,j})_{t(i) \leftarrow t(i)} (N_{n_{i}}^{k}(1) \bigcirc N_{n_{i}}^{k}(2) \bigcirc \cdots \bigcirc N_{n_{i}}^{k}(t(i))) = (H_{h,j}N_{n_{i}}^{k}(j))_{t(i) \leftarrow t(i)} = (N_{n_{i}}^{k}(h) H_{h,j})_{t(i) \leftarrow t(i)} = N_{i}^{k} H.$$

Now we compute the generalized eigenmatrices by replacing P with S in definition.

$$SN_i^k S^{-1} = (PH)N_i^k (H^{-1}P^{-1}) = PN_i^k (HH^{-1})P^{-1} = PN_i^k P^{-1} = A_i^k.$$

The proof is complete.

References

- Rafael Canó, Joan-Josep Climent. Singular graph and [1] extension of Jordan chains of an M-matrix [J]. Linear Algebra Appl, 1996(6): 167-189.
- [2] Roger A, Horn, Charles R Johnson. Matrix analysis [M]. Beijing People's Post & Telecommunications Publishing House, 2005(1): 127-139, (2): 272-273, 437-438,508.

(下转第 234页 Continue on page 234)

 $\frac{e_1}{t^2}$, hence the first equation of formulae(3) becomes

$$a^3 - db_1^3 t^3 = kt^3, (6)$$

From formulae (6), we see that $t \mid a$. Let $a = ta^1$, thus we obtain

$$a_1^3 - db_1^3 = k. (7)$$

Note that $k \mid (d^3 - d)$, by lemma 1, the solution of formulae(7) satisfies $|a_1| < C_1$, $|b_1| < C_1$, where C_1 is an effectively computable constant depending upon d.

Since $a = ta_1, b = tb_1, e = te_1, e_1 = kt^2$, the second equation of formulae(3) gives

$$a_1 - db_1 = kt^2. (8)$$

Therefore $|t| < \frac{(|a_1| + |db_1|)}{|k|}$, hence $|a| = |ta_1| < C$, $|b| = |tb_1| < C$, where C is an effectively computable constant depending upon d. This proves the theorem 1.

Theorem 2 The only integer solutions of the equation

$$y(y+1)(y+2) = 2x(x+1)(x+2)$$
 (9) are given by $(x,y) = (-2,-2), (-2,0), (-2,-1), (0,-1), (0,0), (0,-2), (-1,-1), (-5,-6)$ and $(3,4)$.

Proof Let d = 2, then $k \mid (d^3 - d) = 6$, formulae(7) and formulae(8) give

$$a_1^3 - 2b_1^3 = \pm 1, a_1 - 2b_1 = \pm t^2,$$
 (10)

or
$$a_1^3 - 2b_1^3 = \pm 2$$
, $a_1 - 2b_1 = \pm 2t^2$, (11)

or
$$a_1^3 - 2b_1^3 = \pm 3$$
, $a_1 - 2b_1 = \pm 2t^2$, (12)

or
$$a_1^3 - 2b_1^3 = \pm 6$$
, $a_1 - 2b_1 = \pm 6t^2$, (13)

The first equation of formulae (10) has only solutions $a_1 = \pm 1$, $b_1 = 0$ and $a_1 = \mp 1$, $b_1 = \mp 1$.

These give $t^2 = 1$, $t = \pm 1$, further give (y, x) = (-2, -1), (0, -1), (-2, -2), (0, 0) respectively.

The first equation of formulae(11) gives $2^{1}a_{1}$, let $a_{1}=2a_{2}$, hence we have $4a_{2}^{3}-b_{1}^{3}=\pm 1$. By lemma 2, it gives $a_{1}=0$, $b_{1}=\mp 1$, therefore (y,x)=(-1,-2), (-1,0) respectively.

The first equation of formulae (12) has only solutions $(a_1,b_1)=(\pm 1,\mp 1),(\mp 5,\mp 4)$, so $t^2=1$. These give solutions (y,x)=(0,-2),(-2,0),(-6,-5),(4,3) respectively.

The first equation of formulae (13) becomes $4a_2^3 - b_1^3 = \pm 3, a_1 = 2a_2$. (14)

From lemma 2, formulae (14) has only solutions $a_2 = \pm 1$, $b_1 = \pm 1$, and hence $a_1 = \pm 2$, $b_1 = \pm 1$. Therefore the second equation of formulae (13) gives $\pm 6t^2 = a_1 - 2b_1 = 0$, so $a = ta_1 = 0$, $b = tb_1 = 0$, this gives (x, y) = (-1, -1) by a = y + 1, b = x + 1. The proof is completed.

References

- Baker A. On the representation of integers by binary forms [J]. Phil Trans R Soc, 1968, 263 173-191.
- [2] Nagell T. Solution complete de quelques é quations cubiques à deux indétermirées [J]. J de Math, 1925, 9 (4): 209-270.
- [3] Ljunggren W. On an improvement of a theorem of T Nagell concerning the diophantine equation $Ax^3 + By^3 = c$ [J]. Math Scan, 1953(1): 297–309.

(责任编辑: 尹 闯)

(上接第 230页 Continue from page 230)

- [3] Li Dalin Sum of a defective matrix power series by the regular matrix [J]. Guangxi Sciences, 2003, 10(5): 258– 261.
- [4] Li Dalin. Generalized characteristic matrix and its application [D]. Changchur Jilin University, 2006.
- [5] Li Dalin. Computation of Jordan chains by generalized characteristic matrices [J]. Chinese Quarterly Journal of Mathematics, to be appear.
- [6] Li Dalin. Generalized spectral decomposition and

- operation for the power of a defective matrix [J]. College Mathematics, 2004(2): 93-96.
- [7] Bru R, Rodman L, Schneider H. Extensions of Jordan bases for invariant subspaces of a matrix [J]. Linear Algebra Appl, 1991, 150 209-225.
- [8] Bás I, De Lima T P. A spectral approach to polynomial matrices solvents [J]. Appl Math Lett, 1996(4): 27-33.

(责任编辑: 尹 闯)