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On the Uniqueness of Generalized Eigenmatrices
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Abstract The general form of the maximal Jordan chains of the defective matrix is getten with the

notation of depths of the generalized eigenvectors For two invertible matrices P and S such that
PJP '= SJS ', we find that there exists a block matrix H with upper triangular Toeplitz block

matrices laying on its principal block diagonal such that S =

uniqueness of generalized eigenmatrices.

P H, which allows to prove the
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Jordan canonical forms and Jordan chains of
defective matrices are very important in both pure and
applied mathematics. There are a number of
publications about them recently, especially on the
research of M-matrix'"!. One of their classical
applications is to express the fundamental solutions of
a system of differential equations with constant
coefficients *'. But the brdan chains are difficult to be

obtained-  The generalized

eigenm atrices was given in reference[3~ 6] to enhance

new  concept  of

the computation efficiency of matrix functions and
the

computation of Jordan chains. The existence of the

thar integrals, which enables us to avoid

generalized eigenmatrices has been proved with a

linear system whose coeffident matrix is a generalized
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Vandermonde matrix- In this paper we prove its

with the notation of depths of the

71

uniqueness

. . [
generalized e@genvectors

1 Basic concepts

In this paper, we always assume that 4 is a
defective complex matrix of order n with the distinct

We denote the block diagonal

eigenvalues A1 -+ JAd,

Al [2]
matn'x[ A] by 4 © 4>. With this notation, the

Jordan canonical form of 4 is J = J», 0\1)@ .. D
Jﬂd (Xd) with Jn[. 0\1‘) = Jnl_(l) 0\[)@ @ Jnl_(l(i)) ()\,-)7

where Ju ) Ai) is a Jordan block of order m (j) with

diagonal elements Ai, super-diagonal elements 1, and
1(J)

the others O. n(j) = nis the algebraic multiplicity
=1

of A\i. The t(i) Jordan blocks corresponding toA: inJ
are presented in decreasing (nonincreasing) order with
the largest block first, then the next largest, and so
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oni e, m(1)= = n()= = n(t(i)).
Let N»() be the nilpotent matrix obtained from

Jnii) (M) by replacing the diagonalAi by zeros, then

o --- 1 1

Nﬁ-(j) = 0 - 1 ,k: 27 vni(j)

L 0

Define N;?,.(j) to be the identity matrix of order
ni(j). Denote that Nu, = Ny @ Nuo @ - @
Ny, and let Ni = oD D Nr,i@ .@ Obea

block matrix with the same partition as/ ,in which all
blocks but thei -th are non—zero.

Definition 1’
such that A= PJP '. We call 4" = PNiP ' the
generalized eigenmatrix of A4 corresponding to Ai,
wherek= 0,1, ,m — 1.

We denote by null (4 — AiI)""" the generalized
eigenspace corresponding toA:, that is,

null(4 - A1) = (T4- n1)""T= 0},

Let I, L. be a Jordan chain corresponding

Let P be an invertible matrix

toAi, that is,
Al = XTI, 4L = Wb+ T AT = N+
Too 1.

The leading vector li is an eigenvector, and the
others are generalized eigenvectors“’7’81. If the linear
system (4 - AMI)X = T is inconsistent, then the
Jordan chain i, L.+ b is called maximal For a
maximal Jordan chain 1, L, b, the depths of
vectors i, 'L - | T, are defined asm — 1,m — 2, ,0
respectively. We denote by dp(’k) the depth of EARE
For a given vector 1& null(4 - st dp(h= jif
and only if the linear system (4 — A1) 'X = Tis
consistent, while (4 — A1)’ X = Tis inconsistent.

Suppose that

P= (Pi,P2,- ,Pa),Pi= (Pi1,Pi2, ,Piciy),
Poy= (U,7), 2@ )) o o (1),
wherej= 1, ,t(i), and i (i,), b(i,j), ,’];,-(j)(l}
J) is a maximal Jordan chain corresponding to
Juh) (M) . The length of this chain is just equal to
ni(j), the order of J»,() (i), and the depth of the
eigenvector I (i,7) is equal tomi (j) — 1. When j runs
from 1 to #(i), 1 (i,7) . L(i,j), B (i,j) form a

S A 20084F 8H % 15E% 3

Jordan base of null(4 - )\il)n"( Y. ThusP isannX n
matrix constituted by a Jordan basis of null(4 -
ATy
Denote the total number of Jordan blocks
In, (i) Ai) inJy M) of all sizesni ()= m by Qm ). That
is,ifni(1)= = n(a)= m> n(a+ 1), then
Qm) = a.

2 Main results

Lemma 1"
an, and vectors I, by L€ null(4 - )\i)""(l), we

have
dpE]II)) mln{dp(’];)]: 1,2,'” ’m} ,

(1)
wheres @ T# O . and for T.TE null(4 - A1y,

F1

For complex numbersai,az, - ,

we have the strict inequality

dp(W)7 dp(by>dp (it V) = min{dp (),
dp(T) ). (2)
Let & (i,j),&(i,/) -,

41 (i,j) be the general form of a maximal Jordan

Proposition 1

chain with length7i (j) corresponding toAi. Then

An()-k 1)
4(i,j) = PN TN S T
=1 =1
whereb"” are complex numbers, and
Qn, (1))

WL (i, h)# O.
h=()(n[(j)+ I 1

Proof Sinceli(i,h),- T -0 (i k), bm (i,
h) are the maximal Jordan chain corresponding to
Jnn (N), wehave

dp(k vi(i,h))= nmi(h) = (k+ 1= 1)> n(j)
- k.

Now we prove the Proposition 1 by induction on
k. fk= 1, thendp(&(i,j)) = n(j) — 1, which
im plies that 4 (i,/) is a linear combination of Ti(i, 1),
T, 2, W@ An () Lie,

Qn, (7))

(i) = b T (ih) . (4)
It follows from formulae (1) that
Qn. ()

bhl"j’E(i,h)?é O, by the factdp(4(i.j))=

h= On Gy 1y 1
n(j)- L
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Qn(j)- &k 1)

Suppose that &(i.]) =

he 1
K
z "% vi(ih) holds. Since (4 - Ad) ke 21 =
=1
Qnj) -k 1)

N

,we can easily verify that
W= 1
K

2 B 2 i(ih) s a

=

system (4 — A)X = &(i,)) . Because b (i,h) ,h =
,t(i), is a fundamental solutions of (4 - MI)X

= O, thegeneral solution of (4 - M) X = &(i,)) is

(i )=k 1
X= o li(i,h)+ BT 2 (i

h=1 h=1 I=1

special solution of the linear

hy,
where a,h = <L t(i),
)\i])aﬂ |(i,j):

Qn,(j)- k)

4 1(i,j) = - wP TRy +

t(i) Qn, () -k 1) &
DI TES SIS

h=Qn () -k 1 h= 1 E 1

are scalars.

Since (A4 -

( ,j), we can write

W' T i (i0) .

(5

Since dp(% 1(i,j))= n(j) - k- landdp(li(i,h))

n(j)— k- 1forh= Qui(j) - k)+ 1, ,1(i),

O by Lemma 1. Reducing formulae( 5),
j), thatis

!
we havecr =
we get the general form of & 1 (i,

Qn ()-k) g 1

D0 R (k).

h=1 =1

%+l(l.,j):

The proof is complete.

Proposition 2 Let P and S be invertible matrices
such that4= PJP '= SJS'
invertible matrix H such that S= P H with H= H:D
H D - D Hiis a block matrix with the same
( Huj )eti< w0y and Ha,j is the
h—th block in thej —th block column of Hi. Ifn (j) =

. Then there exists an

partition asJ, where Hi =

ni(h), then Hi; is an upper triangular Toeplitz
matrix, i e ,

Hij=
S - O 01

B

o
il (<, ()
[O, Hri Joy<n, ) 1fn;(j)> n(h),
or Hu;= [O ]
Hi n
Proof Let

),ifn,-(j) < nih).
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S= (85,%,,8%),8= (S1,82,,8),
Si= (407) % 07) %o (7)),
where & (i,j), %(i,7) ., %0 (i,))
Jordan chain with length 7 (j), see formulae( 3) and
formulae(4).

Whenj runs from 1to? (i), the eigenvectors @ (i,
1), ,4(i,j),,%(i,t(i)) are obtained by formulae
(4). Assume that they are linearly independent, then

is a maximal

the column vectors of S, i e, &(i,j),j= 1,2, ,
t(i); k= 1,2,
Thus the column vectors of § form a Jordan basis of
null(4 - Ay 3) and
formulae(4), we have
Sio= (A0.)).
Pt )(HI[/ o, I{t}‘i)‘j)'[‘ =
where (HlT,j,-~- R HtT(i).j)T
H:. Thus
S= (S, ,8m) = (P(Hi;
. ,Pi(HT,t(i) T Hiy . )T) = PH,
(S1,-,8)= (PiH i, ,Pa Hi) = (P1,-,
Pi)(HID @ Ha)= PH.
Since S and P are invertible, H is also invertible. The
proof is complete-
Theorem 1 With respect to the order of A1, ,
Ad, the generalized eigenmatricesAi(k) yi= 1, ,ds k=
0,1,--- ,m — 1, are independent of P such that 4 =
PJP .
Proof  Since Naw
easily verify that

HNf= (H® --@® HD -~ @® Hi) (0D D
Ni@ @ 0)= HiNi = (Hij)ar o (Nof@® Ny
@ .. @ Nﬁl(z(i))) = (]“Ih.ani(j))t(i% iy =
(Nfi(h) Hij )< oo = N H

Now we compute the generalized eigenm atrices

ni(j), are also linearly independent.

According to formulae (

S0 (1,7)) = (Pure,
Pi(Hij  Hug)',
is the j—th block column of

T .
, Hiiy.n)

Huj = , we can

Hyj Niyop !

by repladng P with S in definition.

SNES ! = (PH)N:(H ‘P =
PN{(HH "\P

I kp k
The proof is complete.

= PNiP = 4.
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% , hence the first equation of formulae( 3) becomes

a - dbif = ki, (6)
From formulae(6),we see that 4 a. leta= ta , thus
we obtain

ai - dbi = k. (7)

Note that k| (¢° = d), by lemma 1, the solution of
formulae(7) satisfies| ail < Ci,I b1l < C1, whereCiis
an effectively computable constant depending upon d.

Sincea= tai,b= thi,e= tei,er= ki’ ,the second
equation of formulae( 3) gives

2

a - db= k. (8)

Therefore | 7l < , hencel al =

(| al ‘+k|\ dbi )

| tarl < C,‘ W= 1wl < C, where C is an effectively
computable constant depending upon d . This proves

the theorem 1.

Theorem 2  The only integer solutions of the
equation
yiy+ Dy+ 2= 2(x+ LHix+ 2 (9

aregivenby (x,y)= (= 2,- 2),(- 2,00, (- 2, -
1),(0,-1),(0,0,(0,- 2),(- 1, - 1),(- 5, -

6) and (3,4).

Proof Letd = 2,thenk (d - d) = 6,
formulae(7) and formulae(8) give

ai- Bi=% lLa- 2b==% 7, (10)
orai - 2bi=% 2,41 - Bi=£ 2, (11)
orai — 2=+ 3 - =+ 2%, (12)
orai — 2=+ 6,a - b=+ &, (13)

The first equation of formulae( 10) has only
solutionsat ==+ 1.,bi= Oandai= T 1,bi =T 1.

These givet’ = 1, ==+ 1, further give (y,x)= (-
2, - 1,(0,- 1D, (- 2, - 2),(0,0) respectively.

The first equation of formulae( 11) givesQJ ai, let
ar= 2a> ,hencewe haveda: — bi==£ 1. By lemma 2,
it givesai= 0,hi= T 1, therefore(y,x)= (= 1, -
2),(= 1,0) respectively.
The first equation of formulae (12) has only
solutions (a1,b1)= (£ 1,7 1),(F 5, F 4) ,s0r =
1. These give solutions (y,x)= (0, - 2),(- 2,0),
(= 6, = 5), (4, 3) respectively.

The first equation of formulae( 13) becomes

4 - b==% 3= 2m. (14)
From lemma 2, formulae( 14) has only solutions @2
=+ 1,bh =% 1, and hencear =+ 2, =+ 1.
Therefore the second equation of formulae( 13) gives
+ 6= ai- 2= 0, soa= tm= 0,b= thi= 0, this
gives (x,y)= (- 1, = 1) bya= y+ 1,b= x+ 1
The proof is completed-
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