丢番图方程 y(y+1)(y+2)=2x(x+1)(x+2)的整数解 The Integer Solution on the Diophantine Equation y(y+1)(y+2)=2x(x+1)(x+2)

LI Jin-xiang

黎进香

(Department of Mathematics, Guangxi University for Nationalities, Nanning, Guangxi, 530006, China)

(广西民族大学数学系,广西南宁 530006)

Abstract Let d be a given integer, all integer solutions of the diophantine equation can y (y + 1) (y + 2) = dx (x + 1) (x + 2) are effective determined, i. e. $max \{|x|, |y|\} < C$ (effectively computable constant depending only d). In particular, all solutions can be determined when d = 2.

Key words Diophantine equation, integer solution, effective constant

摘要: 证明丢番图方程 y(y+1)(y+2) = dx(x+1)(x+2) 的所有整数解满足 $\max\{|x|,|y|\} < C$,其中 d, 是一个给定整数 d0 人及依赖于 d0 的有效常数 d1. 特别地 d2 以 d3 之时方程的全部整数解 d4.

关键词: 丢番图方程 整数解 有效常数

中图法分类号: 0156.7 文献标识码: A 文章编号: 1005-9164(2008)03-0233-02

Let d be a given integer, we will show that all integer solutions of the diophantine equation any (y+1)(y+2)=dx(x+1)(x+2) are effective determine, i. e. max $\{|x|,|y|\}$ < C (effectively computable constant depending only d). In particular, all solutions can be determined when d=2

1 Lemmas

Lemma 1^[1] Let d,k are given integers, then the solutions of $x^3 - dy^3 = k$ satisfy the inequality max (|x|,|y|) < C, where C is an effectively comutable constant depending only on d,k.

Lemma 2^[2,3] Let a,b,c be positive integers, a > b > 1, c = 1, 3, (ab,c) = 1, b = 1, if c = 3, then the equation

$$ax^3 + by^3 = c ag{1}$$

has at most one integer solution (x,y), and for this $c^{-1}(x^{-3}\overline{a} + y^{-3}\overline{b})^3$ is either the fundamental unit or its square in the field $Q(^{-3}\overline{d})$ defined by $Q(^{-3}\overline{ab^2})$, excluding however, the equation $2x^3 + y^3$

收稿日期: 2007-07-27

作者简介: 黎进香 (1965-),男,讲师,主要从事数学的教学工作。

= 3 which has the two solutions (1, 1) and (4, -5).

2 Main results

Theorem 1 Let d be a given integer, then the solutions of

y(y+1)(y+2) = dx(x+1)(x+2) (2) satisfy the inequality max $\{|x|, |y|\} < C$, where C is an effectively computable constant depending only d.

Proof Let a = y + 1, b = x + 1, then formulae (2) may be transformed into

$$a^3 - a = d(b^3 - b) \text{ or } a^3 - db^3 = a - db$$
. Let $a^3 - db^3 = e, a - db = e$. (3)

For formulae(3), we have $(db + e)^3 - db^3 = e$ or $(d^3 - d)b^3 + 3d^2b^2e + 3bde^2 + e^3 - e = 0$. (4) Suppose that (b,e) = t and $b = tb_1, e = te_1$, then formulae(4) becomes

$$(d^3 - d)t^3b^3 + 3d^2t^3b^2e^1 + 3t^3db^1e^2 + t^3e^3 - te^4$$

= 0 or

$$(d^3 - d)b^3 + 3d^2b^3e^1 + 3db^1e^2 + e^3 - \frac{e_1}{t^2} = 0.$$
 (5)

Let $k = \frac{e_1}{t^2}$, then k is an integer, obviously $k \mid e_1$. Since $(b_1, e_1) = 1$, thus $(k, b_1) = 1$, from formulae (5) we obtain $k \mid (d^3 - d)$. Note that $b = tb_1$, $e = te_1$ and $k = tb_2$

 $\frac{e_1}{t^2}$, hence the first equation of formulae(3) becomes

$$a^3 - db_1^3 t^3 = kt^3, (6)$$

From formulae (6), we see that $t \mid a$. Let $a = ta^1$, thus we obtain

$$a_1^3 - db_1^3 = k. (7)$$

Note that $k \mid (d^3 - d)$, by lemma 1, the solution of formulae(7) satisfies $|a_1| < C_1$, $|b_1| < C_1$, where C_1 is an effectively computable constant depending upon d.

Since $a = ta_1, b = tb_1, e = te_1, e_1 = kt^2$, the second equation of formulae(3) gives

$$a_1 - db_1 = kt^2. (8)$$

Therefore $|t| < \frac{(|a_1| + |db_1|)}{|k|}$, hence $|a| = |ta_1| < C$, $|b| = |tb_1| < C$, where C is an effectively computable constant depending upon d. This proves the theorem 1.

Theorem 2 The only integer solutions of the equation

$$y(y+1)(y+2) = 2x(x+1)(x+2)$$
 (9) are given by $(x,y) = (-2,-2), (-2,0), (-2,-1), (0,-1), (0,0), (0,-2), (-1,-1), (-5,-6)$ and $(3,4)$.

Proof Let d = 2, then $k \mid (d^3 - d) = 6$, formulae(7) and formulae(8) give

$$a_1^3 - 2b_1^3 = \pm 1, a_1 - 2b_1 = \pm t^2,$$
 (10)

or
$$a_1^3 - 2b_1^3 = \pm 2$$
, $a_1 - 2b_1 = \pm 2t^2$, (11)

or
$$a_1^3 - 2b_1^3 = \pm 3$$
, $a_1 - 2b_1 = \pm 2t^2$, (12)

or
$$a_1^3 - 2b_1^3 = \pm 6$$
, $a_1 - 2b_1 = \pm 6t^2$, (13)

The first equation of formulae (10) has only solutions $a_1 = \pm 1$, $b_1 = 0$ and $a_1 = \mp 1$, $b_1 = \mp 1$.

These give $t^2 = 1$, $t = \pm 1$, further give (y, x) = (-2, -1), (0, -1), (-2, -2), (0, 0) respectively.

The first equation of formulae(11) gives $2^{1}a_{1}$, let $a_{1}=2a_{2}$, hence we have $4a_{2}^{3}-b_{1}^{3}=\pm 1$. By lemma 2, it gives $a_{1}=0$, $b_{1}=\mp 1$, therefore (y,x)=(-1,-2), (-1,0) respectively.

The first equation of formulae (12) has only solutions $(a_1,b_1) = (\pm 1, \mp 1), (\mp 5, \mp 4)$, so $t^2 = 1$. These give solutions (y,x) = (0, -2), (-2, 0), (-6, -5), (4,3) respectively.

The first equation of formulae (13) becomes $4a^3 - b^3 = \pm 3$, $a_1 = 2a_2$. (14)

From lemma 2, formulae (14) has only solutions $a_2 = \pm 1$, $b_1 = \pm 1$, and hence $a_1 = \pm 2$, $b_1 = \pm 1$. Therefore the second equation of formulae (13) gives $\pm 6^2 = a_1 - 2b_1 = 0$, so $a = ta_1 = 0$, $b = tb_1 = 0$, this gives (x,y) = (-1, -1) by a = y + 1, b = x + 1. The proof is completed.

References

- Baker A. On the representation of integers by binary forms [J]. Phil Trans R Soc, 1968, 263 173-191.
- [2] Nagell T. Solution complete de quelques é quations cubiques à deux indétermirées [J]. J de Math, 1925, 9 (4): 209-270.
- [3] Ljunggren W. On an improvement of a theorem of T Nagell concerning the diophantine equation $Ax^3 + By^3 = c$ [J]. Math Scan, 1953(1): 297-309.

(责任编辑: 尹 闯)

(上接第 230页 Continue from page 230)

- [3] Li Dalin Sum of a defective matrix power series by the regular matrix [J]. Guangxi Sciences, 2003, 10(5): 258– 261.
- [4] Li Dalin. Generalized characteristic matrix and its application [D]. Changchur Jilin University, 2006.
- [5] Li Dalin. Computation of Jordan chains by generalized characteristic matrices [J]. Chinese Quarterly Journal of Mathematics, to be appear.
- [6] Li Dalin. Generalized spectral decomposition and

- operation for the power of a defective matrix [J]. College Mathematics, 2004(2): 93-96.
- [7] Bru R, Rodman L, Schneider H. Extensions of Jordan bases for invariant subspaces of a matrix [J]. Linear Algebra Appl, 1991, 150 209-225.
- [8] Bás I, De Lima T P. A spectral approach to polynomial matrices solvents [J]. Appl Math Lett, 1996(4): 27-33.

(责任编辑: 尹 闯)