## Oscillation of Impulsive Partial Difference Equation 脉冲偏差分方程的振动性

HE Yan-sheng 何延生

(Department of Mathematics, Yanbian University, Yanji, Jlin, 133002, China) (延边大学数学系,吉林延吉 133002)

**Abstract** By employing arithemetic mean-geometric mean inequality and partial difference inequality, we obtain sufficient conditions for oscillation of all solution of the impulsive partial difference equation

$$\begin{cases} A_{m+1,n} + A_{m,n+1} - A_{mn} + p_{mn} A_{m-r,n-l} = 0, m \geqslant m_0, n \geqslant n_0 - 1, m \neq m_k, \\ A_{m_{k+1},n} + A_{m_k,n+1} - A_{m_k,n} = b A_{m_k,n}, \forall n \geqslant n_0 - 1, k \in N(1), \end{cases}$$

where  $\{p^{nn}\}$  is a double sequence and  $p^{nn} \geqslant 0$  and not identically zero, for  $m \geqslant m^0$ ,  $n \geqslant n^0 - 1$ ,  $\{b^k\}$  is a real sequence, r, l are positive integers,  $0 \leqslant m^0 \leqslant m^1 \leqslant \cdots \leqslant m_k \leqslant \cdots$  with  $\lim_{k \to \infty} m_k = \infty$ .

Key words partial difference equation, oscillatory solution, impulsive

摘要: 获得脉冲偏差分方程

$$\begin{cases} A_{m+1,n} + A_{m,n+1} - A_{mn} + p_{mn} A_{m-r,n-l} = 0, m \geqslant m_0, n \geqslant n_0 - 1, m \neq m_k, \\ A_{m_{k-1},n} + A_{m_k,n-1} - A_{m_k,n} = b_k A_{m_k,n}, \forall n \geqslant n_0 - 1, k \in N(1), \end{cases}$$

所有解振动的充分条件,其中  $\{p_{mn}\}$  是一个双指标序列,对  $m \geqslant m_0, n \geqslant n_0 - 1$ ,有  $p_{mn} \geqslant 0$ 且不恒为零, $\{b_k\}$ 是实数序列,r,l 是正整数, $0 \leqslant m_0 \leqslant m_1 < \cdots < m_k < \cdots$  满足  $\lim m_k = \infty$ .

关键词: 偏差分方程 振动解 脉冲

中图法分类号: 0175.7 文献标识码: A 文章编号: 1005-9164(2008)03-0235-03

The oscillatory behavior on partial difference equations without impulses has been investigated by some authors [1-4]. However, to the present time, there is no literature investigate the oscillation of impulsive partial difference equations.

Let N denote the set of all integers. For any  $a \in \mathbb{N}$ , define  $N(a) = \{a, a+1, \cdots, \}$ . For any  $m, r \in \mathbb{N}(1)$ , define  $N(m-r,m) = \{m-r, m-r+1, \cdots, m\}$ . In this paper, we consider the sufficient conditions for oscillation of all solutions of the impulsive partial difference equation

\_\_\_\_

收稿日期: 2007-09-21 修回日期: 2007-12-24

作者简介: 何延生 (1962-),男,副教授,主要从事泛函微分方程研究 工作

\* 国家自然科学基金项目(10661011)资助。

广西科学 2008年 8月 第 15卷第 3期

$$\begin{cases} A_{m+1,n} + A_{m,m+1} - A_{mn} + p_{nm} A_{m-r,n-l} = 0, \\ m \geqslant m_0, n \geqslant n_0 - 1, m \neq m_k, \\ A_{m_{k+1},n} + A_{m_k,m+1} - A_{m_k,n} = b_k A_{m_k,n}, \\ \forall n \geqslant n_0 - 1, k \in N(1), \end{cases}$$
(1)

where  $\{p_{mn}\}$  is a double sequence and  $p_{mn} \geqslant 0$  and not identically zero, for  $m \geqslant m_0$ ,  $n \geqslant n_0 - 1$ ,  $\{b_k\}$  is a real sequence, r, l are positive integers,  $0 \leqslant m_0 \leqslant m_1 \leqslant \cdots \leqslant m_k \leqslant \cdots$  with  $\lim_{k \to \infty} m_k = \infty$ . For any  $m_0$ ,  $n \geqslant 0$ , let  $O_{n_0,n_0} = \{b_k K_0 \rightarrow R\}$ , where

$$K_0 = \{(m,n) | m \geqslant m_0 - r, n \geqslant n_0 - (l + 1) \} \setminus \{(m,n) | m \geqslant m_0, n \geqslant n_0 - 1 \}.$$

## 1 Prel iminaries

**Definition 1** For given  $mo \ge 0$ ,  $no \ge 0$  and  $b \in G_{0^{n}0}$ , a double sequence  $\{A^{mn}\}$  is said to be a solution of equation (1) satisfying the initial condition

$$A_{mn} = h_{mn}, (m,n) \in K_0, \qquad (2)$$

if  $\{A^{mn}\}\$  is defined on  $N(m^0-r)\times N(n^0-(l+1))$ and satisfies equation (1) and formulae (2).

For given  $m \geqslant 0$ ,  $n \geqslant 0$  and  $k \in \mathbb{Q}_{n_0,n_0}$ , by means of method of steps, the solution of equation (1) exists and unique.

**Definition 2** A solution of equation (1) is said to be oscillatory if it is neither eventually positive nor eventually negative.

When  $\{m_k\} = \emptyset$ , i. e.  $\{m_k\}$  is an empty set, equation (1) reduces to the partial difference equation  $A_{m+1,n} + A_{m,n+1} - A_{mn} + p_{mn} A_{m-r,n-l} = 0, m \geqslant$  $m_0, n \geqslant n_0 - 1.$ 

If there is a sequence  $\{m_{k_i}\}$  of positive integers such that  $m_i \rightarrow \infty$  when  $i \rightarrow \infty$ , and  $b_{k_i} \leqslant -1$ , then, it is easy to see that every solution of equation (1) is oscillatory. Therefore, we always assume that  $b_k > -1$ for any  $k \in N(1)$ .

## Main results

The following theorem 1 provides a sufficient condition for oscillation of all solutions of equation (1).

**Theorem 1** Assume that

(i) 
$$\lim_{m,n\to\infty} \sup [(1+b^r)^{-l}_{m=m} \sup_{s \in \{m_k\}} \prod_{m_k \in N(m-r, m-1)} (1+b^r)^{-l}_{m+m}]$$

$$(b_{k})^{-1} ] < \infty ,$$

$$(ii) \lim_{m,n\to\infty} \inf [\sum_{i \in N(m-r,m-1)} p_{i,n-l} +$$

$$\sum_{j \in N (n-l, n-1)} p_{m,j} \bowtie [(1+b_s)_{m=m_s \in \{m_k\}}^{-l} \prod_{m_k \in N (m-r, m-1)} (1$$

$$+ b_{k})^{-1} ] > \frac{(r+l)^{r+l+1}}{(r+l+1)^{r+l+1}}.$$
 (5)

Then every solution of equation (1) is oscillatory.

**Proof** Suppose on the contrary, there is a nonoscillatory solution  $\{A_{nm}\}\$  of equation (1) which is eventually positive. Without loss of generality, we assume that  $A_{mn} > 0$  for  $m \ge m_0^1 - r$ ,  $n \ge n_0^1 - (l + l)$ 

$$w_{mm} = \frac{A_{m-r,n-l}}{A_{mn}}, m \geqslant m_0^1, n \geqslant n_0^1 - 1.$$
 (6)

By equation(1), we have

$$\frac{A_{m+1,n} + A_{m,n+1}}{A_{mn}} = 1 - p_{mn} w_{mn}, m \neq m_k,$$

and 
$$\frac{A_{m_k^{+-1},n} + A_{m_k,n^{+-1}}}{A_{m_k^{n}}} = 1 + b_k$$
, so

$$\frac{A_{mn}}{A_{m+1,n}} \geqslant [1 - p_{nn} w_{mn}]^{-1}, m \neq m_k, \tag{7}$$

$$\frac{A_{mm}}{A_{m,m+1}} \geqslant [1 - p_{mm} w_{mn}]^{-1}, m \neq m_k, \qquad (8)$$

$$\frac{A_{m_k,n}}{A_{m_k^{+-1},n}} \geqslant (1+b_k)^{-1}, \frac{A_{m_k,n}}{A_{m_k^{-n+-1}}} \geqslant (1+b_k)^{-1}.$$
(9)

By formulae(6) $\sim$  (9), we have

$$w_{mn} = \frac{A_{m-r,n-l}}{A_{m-r+1,n-l}} \frac{A_{m-r+1,n-l}}{A_{m-r+2,n-l}} \dots \frac{A_{m,n-l}}{A_{m,n-l+1}}$$

$$\frac{A_{m,n-\frac{l+1}{2}}}{A_{m,n-\frac{l+2}{2}}} \cdots \frac{A_{m,n-1}}{A_{mn}} \geqslant \prod_{\substack{i \in N(m-r,m-1) \\ i \notin \{m_k\}}} (1 - \frac{1}{n})$$

$$p_{i,n-l}w_{i,n-l})^{-1} \times \prod_{\substack{j \in N(n-l,n-1) \\ m \notin \{m_k\}}} (1 - p_{mj}w_{mj})^{-1} (1 +$$

$$b_s\big)_{m=m_s\in \{m_k\}}^{-1}\prod_{m_k\in N(m-r,m-1)}\left(1+b_k\right)^{-1}.$$

By employing arithemetic mean-geometric inequality, we get

$$w_{mn} \geqslant \{1 - \frac{1}{r+l} [\sum_{i \in N (m-r,m-1)} p_{i,n-l} w_{i,n-l} + i \notin \{m_k\} \}$$

$$\sum_{\substack{j \in N(n-l,n-1) \\ i \notin \{m_k\}}} p_{m,j} w_{m,j} \rceil^{-r-l} \} (1 + b_k)_{m=m_s \in \{m_k\}}^{-l} .$$

$$\prod_{m_k \in N(m-r,m-1)} \left(1 + b^k\right)^{-1}.$$

By equation (1), we get
$$0 \leqslant \sum_{\substack{i \in N(m-r,m-1) \\ i \notin \{m_k\}}} p_{,n-l} w_{i,n-l} +$$

$$\sum_{\substack{j \in N(n-l,n-1)\\ i \notin \{m_k\}}} p_{m,j} w_{m,j} < r+ l.$$

Using the inequality<sup>[5]</sup> 
$$(1 - \frac{c}{r+l})^{-r-l} \geqslant$$

$$\frac{(r+\ l+\ 1)^{r+\ l+\ 1}}{(r+\ l)^{r+\ l+\ 1}}c \quad (0 \leqslant c < r+\ l), \text{ we have}$$

$$w_{mn} \geqslant \frac{(r+l+1)^{r+l+1}}{(r+l)^{r+l+1}} \left[ \sum_{i \in N(m-r,m-1)} p_{i,n-l} \right].$$

$$w_{i,n-l} + \sum_{j \in N(n-l,n-1)} p_{m,j} w_{m,j} ] (1+b_s)_{m=m_s \in \{m_k\}}^{-l}$$

$$\prod_{m \in N (m-r,m-1)} (1+b_k)^{-1} \geqslant \frac{(r+l+1)^{r+l+1}}{(r+l)^{r+l+1}}.$$

$$\left[\sum_{\substack{i \in N(m-r,m-1) \\ i \notin \{m_k\}}} p_{i,n-l} + \sum_{\substack{j \in N(n-l,n-1) \\ i \notin \{m_k\}}} p_{m,j}\right]$$

$$(1 + b^{k})^{-1}_{m=m} = m \in \{m_{k}\} \prod_{m_{j} \in N(m-r,m-1)} (1 + b^{k})^{-1} \times$$

$$\{\min\{w_{i,j}|\ (i,j)\in\ N(m-r,m)\times\ N(n-l,n-l)\}$$

Guangxi Sciences, Vol. 15 No. 3, August 2008

1) } } .

By formulae(5), we can choose constants  $\theta$ ,  $M_0$ ,  $N_0 > 0$  such that

$$\frac{(r+l+1)^{r+l+1}}{(r+l)^{r+l+1}} \left[ \sum_{\substack{i \in N (m-r,m-1) \\ i \notin \{m_k\}}} p_{i,n-l} + \right]$$

$$\sum_{\substack{j \in N(n-l,n-1)\\ i \notin \{m_k\}}} p_{m,j} \nearrow (1+b_s)_{m=m_s \in \{m_k\}}^{-l}.$$

$$\prod_{m_k \in N(m-r,m-1)} (1+\ b_k)^{-1} > \ \theta > \ 1, m > \ M_0, n > \ N_0.$$

Thus

$$w_{mm} \geqslant \theta \min\{w_{i,j} | (i,j) \in N(m-r,m) \times N(n-l,n-1)\}, m > M_0, n > N_0.$$
 (10)

Let  $\lim_{m,n\to\infty}$  inf  $w_{mm}=\lambda_0$ . By formulae (4) and formulae

(5), we obtain

$$\lim_{\substack{m,n\to\infty\\i\notin\{m_k\}}}\inf\left[\sum_{\substack{i\in\ N(m-r,m-1)\\i\notin\{m_k\}}}p_{i,n-l}+\sum_{\substack{j\in\ N(n-l,n-1)\\m\notin\{m_k\}}}p_{m,j}\right]>0.$$

Then we can choose constants  $a, M_1, N_1 > 0$  such that

$$\sum_{\substack{i \in N (m-r,m-1) \\ i \notin \{m_k\}}} p_{i,n-l} + \sum_{\substack{j \in N (n-l,n-1) \\ m \notin \{m_k\}}} p_{m,j} \geqslant a > 0$$

for  $m > M_1, n > N_1$ .

Thus, for any  $m>M_{\perp}, n>N_{\perp}$  , there are positive integers  $m^*$  ,  $n^*$  such that

$$\frac{a}{r+l} \leqslant p_{m}^{*},_{n-l} = -\frac{A_{m}^{*} + 1,_{n-l} + A_{m}^{*} + 1,_{n-l+1}}{A_{m}^{*} - r,_{n-2}} +$$

$$\frac{A_{m^*, n-l}}{A_{m^*-r, n-2}} \leqslant \frac{A_{m^*, n-l}}{A_{m^*-r, n-2}} = w_{m^*}^{-1}, n-l$$

or

$$\frac{a}{r+\ l} \leqslant \ p_{m,n^*} \ = \ - \ \frac{A_{m+\ 1,n^*} \ + \ A_{m+\ 1,n^*+\ 1}}{A_{m-r,n^*-\ l}} \ +$$

$$\frac{A_{m,n^*}}{A_{m-r,n^*-l}} \leqslant \frac{A_{m,n^*}}{A_{m-r,n^*-l}} = w_{m,n^*}^{-1}.$$

So we have  $\lambda_0 < \infty$ . We will show  $\lambda_0 > 0$ . If it is on the contrary, we set  $\lim_{m,n\to\infty} \inf w_{mn} = 0$ , there are positive integers sequence  $\{s_k\}, \{t_k\}, s_k < s_{k+1}, t_k < t_{k+1}, s_k, t_k \to \infty, k \to \infty$ ,

 $w_{\tilde{k},t_k} = \min\{w_{mn} | (m,n) \in N(m_0,s_k) \times N(n_0 - s_k)\}$ 

By formulae (10), we get  $w_{s_k,t_k} \geqslant \theta w_{s_k,t_k}$ . This is a contradiction, so  $0 < \lambda_0 < \infty$ . By  $\lim_{m,n\to\infty} \inf w_{mm} = \lambda_0$ , for every real number Z(0 < Z < 1), there are M, N > 0 such that  $w_{mm} \geqslant Z_{0}$ , for m > M, n > N. By

formulae (10), we have  $w_{mn} \geqslant \theta \mathbb{Z}_0$ ,  $m > \max\{M_0, M + r\}$ ,  $n > \max\{N_0, N + l\}$ . Therefore, we have  $\lim_{m, n \to \infty} \inf w_{mn} = \theta \mathbb{Z}_0$ . Let  $\mathbb{Z} \to 1$ , we obtain  $\lambda_0 \geqslant \theta \lambda_0$ .

This is a contradiction, then we complete the proof-

**Corollary 1** Assume that

$$(i) m_{k+1} - m_k \geqslant T, rl < T, 0 \leqslant b_k \leqslant L, k = 1, 2, \cdots,$$

(ii) 
$$\lim_{mn\to\infty} \inf \frac{(r+l+1)^{r+l+1}}{(r+l)^{m+l+1}} p_{mn} > 1+ L.$$

Then every solution of equation (1) is oscillatory.

Corollary 2 Assume that

(i) 
$$m_{k+1} - m_k \ge T$$
,  $rl < T, b \ge 0$ , where  $k = 1$ ,  $2, \dots, \lim_{k \to \infty} b_k = 0, p(x, y) \equiv p$ ,
$$(ii) p \frac{(r+l+1)^{r+k-1}}{(r+l)^{r+k-1}} > 1.$$

Then every solution of equation (1) is oscillatory.

Example Consider the oscillation of the equation 
$$\begin{cases} A_{m+1,n} + A_{m,n+1} - A_{mn} + \frac{3}{4}^5 A_{m-1,n-2} = 0, \\ m \geqslant m_0, n \geqslant n_0 - 1, m \neq 3k, \\ A_{3k+1,n} + A_{3k,n+1} - A_{3k,n} = \frac{1}{2} A_{3k,n}, \\ \forall n \in [n_0 - 1, \infty), k \in N(1). \end{cases}$$

By corollary 1, we know that every solution of this equation is oscillatory.

## References

- Zhang Binggen, Liu B.M. Oscillation criteria of certain nonlinear partial difference equations [J]. Computers Math Applic, 1999, 38 107-113.
- [2] Zhang Binggen. Oscillation of delay partial difference equations [J]. Progress in Natural Science, 2001, 11(5): 321-330.
- [3] Zhang Binggen. Oscillation of a class of delay partial difference equations [J]. J Difference Equation Appl, 1995, 1 215.
- [4] Zhang Binggen Oscillation crieteria of partial difference equations with continuous variable [J]. Acta Math Sinica (in Chinese), 1999, 42(3): 487-494.
- [5] Wei Gengping, Shen Jianhua Oscillation of solutions of impulsive difference equations with continuous variable [J]. Mathematica Application, 2005, 18(2): 293–296.

(责任编辑: 尹 闯)