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Abstract The bifurcation of travelling wave solutions for the generalized water wave equations are
studied by using the bifurcation theory of planar dynamical systems Under various parameter

conditions, all exact explicit formulas of solitary wave solutions and kink(antikink) wave solutions

and uncountable infinity many periodic wave solutions are listed.
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We consider the following generalized water wave
equations
U
w+ uux+ ve= 0, v+ Ju(v+ 1) |+ T
= 0, (0. 1)
where vV is the elevation of the water wave, U is the

surface velocity of water along x —direction, Uis a non—

zero real number. Specially, whenU= 1, equations( 0.
1) is called nonlinear

. 1 . .
Boussinesq class'". Recently, the new solitary solutions

long wave equations of

. . >
for this equation were constructed by He and Xu' 7.
Unfortunately, the results in reference [ 2] is not

did not

bifurcation behaviors of phase portraits for the

complete, since the authors study the

corresponding travelling wave equations. In this paper,
we consider bifurcation problem of travelling wave for
equation (0. 1), by using the bifurcation theory of
system™". Under fixed

dynamical parameter
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conditions, all exact explicit formulas of solitary wave,
kink wave and periodic wave solutions can be easily
obtained.

W e first consider the travelling wave solutions in
the form

u(x,ty= u(Y),v(x,t)= v(Y,Y= k(x- a),k
7= 0, (0.2
where ¢ denotes the wave speed- Therefore equation

(0.1 redgces to be

o+ w+ v= 0, (0. 3)
~ot W DI+ U= 00 (0.4)
where “” is the derivative with respect to Y.

Integrating formulae( 0. 3), formulae( 0. 4) once, we

have
- cu+ _éu2+ v= g, (0.5)
— o+ ulv+ D+ —éllUkzu”: 22, (0. 6)

where g1,g2 are integration constant. Inserting (0. 5)

into formulae(0. 6), we have

U= @%z[(g?+ cgl) + (cz— g — lu+ _écuz
; —éu3]. (0.7)
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Clearly, formulae( 0. 5) is equivalent to the following

tw odim ensional systems

d d 2
ﬁ: y,a’l{(: @2[2(g2+ cg)+ 2(02— g1 -

(0.8)

Du+ al’ + us].

1 Bifurcations of phase portraits of systems
(0.8)

In this section, we study the phase portraits of
system (0. 8). W e make the transformationu = ()(Yj+
O ,y= y,Y= Y, whereO satisfies the equation

2g2+ cg)+ 2¢ - gi—- Du+ al+ = O

(LD
The system (0. 8) becomes
dO d :
= o= M0+ pOr g, (1.2)

wherer= @%,p: c+ 30 ,g= 2(c- g - 1+ O

+ —;(5).

The systems ( 1. 2) has the first integral

yi= BOO+ 3p0k %)+ b, (1.3)
and
HOp) = ¥ = 500+ Sp0r 2)= b (14
Thus, we have

y=E (50O0+ Sp0r 2)+ h)?.
Denote that

£1O= 0x pO qf:(O= Os Sp0 2,

16
D= p' - 4ba= g - &,

which imply the relations in the (p,q)— parameter

(15)

= _2

1
plane Lt = —,p*. Lz q= ~p’.
Thus, we have
(i) FA1 > 0,g7 0, there exist 3 equilibrium

- pt A
points of system ( L. 2): Al,z(_% ,0),0(0,

0); whenp = 0,9 < 0, there exist 3 equilibrium
points of system (1 2) A2 - ¢,0),0(0,0);

(ii) IfA1r = 0,p7 0, there exist 2 equilibrium

points of system (1. 2): O(0,0),4 (- "% ,0); whenp
= q= 0, there exist a tritoot equilibrium point of
system (1. 2): O(0, 0);

(iii) IFA1 < 0, there exists an equilibrium point of
system( 1. 2): O(0,0).

For H(Oy) defined by formulae( 1. 4),we have

h= HO.0)= - O3 p0r g.i= 1.2.3.
A 20084 8H % ISEF 34

1 |

For afixed &, the level curve H(O, y) = h defined
by formulae( 1. 4) determines a set of invariant curves
of system( 1. 2), which contains different branches of
curves. As & is varied, it defines different families of
orbits of system (1. 2) with different dynamical
behaviors.

Following, we consider the bifurcations of the
phase portraits of system (L 2). In the (p.q)-
parameter plane, the curves Li,L2, Lz p= 0(q < 0)
and the straight lineL4 g= Opartitionitinto 7 regions

shown in Fig. 1.

—0.21(LY p
(VD) —0.41 (Vi

Fig. 1

parameter plane.

The bifurcation set of system( 1. 2) in (p,q)-

From the above analysis we obtain the different
phase portraits of system ( 1. 2) shown in Fig. 2 and
Fig. 3.

2 Solitary wave and kink (or anti-kink)

wave solutions determined by equation( 0. 1)

In this section, we shall give all exact explicit
parametric representations of solitary wave solutions
and kink (or antikink) wave solutions of equation
(0. 1) under given parameter conditions.

(i) The caser> 0.

() (p.9)€ (I ) or(p.g)€ (V). In this case,
we have the phase portrait of system (1. 2) shown in
Figs. 2(a)and (e). Notice that H(0,0)= 0= h2. We
see from formulae( 1. 4) that the arch curve connecting
0(0,0) in the right side of the straight lineO= 0 has
the algebraic equation

y=+ (GO0 00 ) (2
Thus, by using the first equation of system( 1. 2) and
formulae( 2 1), we obtain the following solitary wave

solution with valley form of equation(0. 1).

u(x, )= Or O v(x,0)= gi+ (O O) -

1,0, O\2
Lo oy, (2.2)
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Fig. 2 The phase portraits of system (1. 2) forr> 0
(a) (.)€ (I ), (b) (p.g)€ ). (c) (p.€ ). (d) (p.9)E IV ), (e) (p.e)E V). () (p.9)E (V). (g) (p.
)€ (), (h) (p.g9) € (Ls).p> 0.() (p.9)€ (L2).p> 0, () (p.9) € (L1).p> 0.(k) (.)€ (Ls), (1) (p,q)= (0,
0). (m) (P.9)€ (La).p < 0.(n) (p.9)E (L2),p < 0. (o) (P.)€ (L1).p> 0.

0.2

S

?3

>
<B

&

—_

0.8 ¥y Yi0.

—

0.5

i@
45

Fig. 3 The phase portraits of system (1.2) forr < 0
(a) (p.)€ (I ). (b) (p.g)E A1), (o) (p.€ UD). (d) (p.9)E IV ), (&) (p.9)E V). () (p.9)E V), (g) (p.
@€ (), (h) (p.g) € (Ls).p> 0,() (p.9)E (L2).p> 0, () (p.9) € (L1).p> 0.(k) (p.9)E (L3), () (p.q9)= (O,
0), (m) (p.9)€ (La),p < 0.,(n) (p.g9) € (L2).p < 0, (0) (p,)E (L1).p < Q
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where O= Z’(X -

ct))).
(2) (p.q)€ I )or(p,q)€ (VI) . Inthis case,
we have the phase portrait of system(1. 2) shown in

Figs 2(h) and (f). Notice that H(Q'= — - (p+

1
A,0) = - _2(3(_3])()+ q) = h. We see from

9
/(- pt P - Sqeosh(

formulae( 1. 4) that the arch curve connecting 41 (Q,

0) has the algebraic equation
y== 50- 00 - G0+ gO-

(—;)pQ+ 9P

Thus, by using the first equation of system(1.2) and

(23)

formulae( 2 3) , we obtain the following solitary wave

solution with peak form of equation( 0. 1).
ux,0)= O O v(x,t)= g+ (O O) -

2O 0, (24
where O= Q4 (O + 2)/Q+ Sp+

p(Tp+ 3 Di)eosh( - r(pQ+ 29)(x -
c))).
(3) (p.q)€ (II) or(p.q)& (VII) . In this case,
we have the phase portrait of system(1. 2) shown in

Figs. 2(¢) and (g). Notice that H(Q = _;(— p+

A1), 0)= - LA+ g)= M. Similar to the
cases (2), we obtain the following solitary wave
solutions with valley form of equation(0. 1).

ux,t) = O O v(x,t)= g1+ (O O) -

1.0, 0
S(On 0, (25)

where

O= Q4+ (pQ+

o=

%) (Q+ Sp

p(Tp = 3 Ai)cosh( - r(pQ+ 2)(x -
ct))).
(4) (p.9)€ (L2),pg” 0. Inthis case, we have
the phase portrait of system(1.2) shownin Figs. 2(i)
and (n). Notice that H(0,0)= 0= A1 = h3. Smilar
to the cases (1), we obtain the following kink and
anti-kink wave solutions of equation( 0. 1).
u(x,t) = O Q,v(x,t) = g1+ C(OF O ) —
FEAE 20084 8 H 15EK% 3M

[ T (I R
5O Oy,

where

O= 4p/3(cosh(—23p Slx - a))E

it (2L (x — ) ~ 4p).

(5) (p.q) € (L3). In this case, we have the
phase portrait of system (1. 2) shown in Fig. 2(k).
— 1
Notice that H(* - q,0)= _2”6]2: hi, weobtain
the following kink and anti—kink wave solutions of

equation( 0. 1).
u(x,t)= O O v(x,0)= g1+ ¢(Ox Q) -
1 .
- (O )7, (2.7
where O= £ —_qcosh(—é 2(- q@)yr(x - a)).
(ii) The caser < 0.
(D (p.9€ I )or(p.g)€ (I ). In this case.

we have the phase portrait of system (1. 2) shown in

: 1
Figs. 3(a) and (b). Notice that HQ = B (- p+

A, 0) = - _;(3(_;[)(?+ q) = h:. We see from
formulae( 1. 4) that the arch curve connecting 42 (Q3,

0) has the algebraic equation

y=£ 0= Q)[- Os F(5p0+ O

+ (‘%pQ+ Q)T

Thus, by using the first equation of system( 1. 2) and

(2.8

formulae( 2 8), we obtain the following solitary wave
solutions with valley and peak form of equation(0. 1).
u(x,t) = Oy © Vv(x,t) = gi+ c(()+ O ) —

1 2
S (O O, (2.9
w here
O= Q4+ Q4+ 29)/Q + _:l))p + —é
p(7p - 3 A_1)(:osh( - r(pQ+ 2)(x -

c))).
(2) (p.9)€ (V) or(p,g9<€ (V). In thiscase,

we have the phase portrait of system (1. 2) shown in

Figs. 3(d) and (e). Notice that H(Q = - _;(p+

— o
81),0)= - ZO(5pO+ g) = k. Weobtain the
solitary wave solutions with valley and peak form of
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equation(0Q. 1) , which is the same as formulae( 2. 9).
(3) (p.g)€ (VI) or(p,g)E€ (V) . In this case,
we have the phase portrait of system(1. 2) shown in
Figs. 3(f) and (g). Notice that H( 0,0) = 0= /. We
see from formulae( 1. 4) that the arch curve connecting

0(0, 0) has the algebraic equation

y=t  STQ- 0= #o_ 3t (219

Thus, by using the first equation of system(1.2) and
(210), we obtan

solutions with valley and peak form of equation(0. 1).
ux,0)= O O v(x,t)= g+ (O O) -

1 2
Loooy,

the following solitary wave

(2. 11)

where O= /(- p*

ct))).

(4) (p,q) € (L4). In this case, we have the
phase portrait of system (1. 2) shown in Figs 3(h)
and (m). Notice that H(0,0) =

following solitary wave solutions with valley and peak

P - Sgeosh( grix -

0, we obtain the

form of equation( 0. 1).
ux,t) = O O v(x,t)= g1+ (O O) -

SO 0, (2. 12)

12p
9- 2p’(x - a)”
(5) (p.9) € (L2),p7 0. In this case, we have
the phase portrait of system( 1. 2) shown in Figs. 3(1)

and (n). Notice that H(Q = — _:I;p,()):

where O=

roa
T o162 T
h2, we obtain the following solitary wave solutions

with valley and peak form of equation(0. 1).
u(x,t) = O (:*),v(x,t) = gi+ c(()e- O ) -

20 O, (2. 13)
whereO= — 2pE  2p Beosh( — r(x - a)).
(6) (p,q)€ (L1),p7 0. In this case, we have
the phase portrait of system( 1. 2) shown in Figs. 3(j)
and (o). Notice that H( - _ép, 0) = - 3}’6194’ we

obtain the following solitary wave solutions with valley
and peak form of equation(0. 1).
u(x,t) = Or O Vix,t) = g+ c(()e- (@] ) -

1 ,
— (O O,
whereO= 120 /(9—- 2p°(x — ct)?).
(7) (p,q) € (L3). In this case, we have the
242

(2. 14)

|

phase portrait of system (1.2) shown in Kgs. 3(k).
Notice that H(0,0) =

solitary wave solutions with valley and peak form of

0, we obtain the following
equation( 0. 1).

u(x,t)= Or O v(x,0)= giv (K O)-
1~
2O 0),
where O= £

(2. 15)

2(- q)sinh( g (x — ct)).

3  Periodic wave solutions determined by
equation( 0. 1)

In this section, we use the results of section 1 to
discuss the existence of uncountable infinity many
periodic wave solutions.

Theorem 4. 1 The caser> 0.

(1) Corresponding to Figs. 2(a), (b), (d), (e),
(f) and (g),equation(0. 1) has one family of smooth
periodic wave solutions.

(2) Corresponding to Fig. 2(k). Suppose that A€
(0,h3) , equation ( 0. 1) has one family of smooth
periodic wave solutions.

( 3) Corresponding to Figs. 2(i) and formulae
(2. 14). Suppose that he (h,0) equation(0. 1) has
one family of smooth periodic wave solutions.

Theorem 4. 2 The caser < 0.

(1) Corresponding to Fig. 3(1), equation(0. 1) has
one family of smooth periodic wave solutions.

(2) Corresponding to Fig. 3(k).

(i) Suppose that & (1, 0) , equation(0. 1) have
two families of smooth periodic wave solutions.

(ii) Suppose that A& (0, + =) , equation(0. 1)
has one family of smooth periodic wave solutions

(3) Corresponding to Fig. 3(c), equation (0. 1)
has one family of smooth periodic wave solutions.

(4) Corresponding to Fig. 3(f).

(i) Suppose that k& (h3,h1) , equation(0. 1) has
one family of smooth periodic wave solutions.

(ii) Suppose that h€ (0, + =) , equation(0. 1)
has one family of global periodic wave solutions.

(iii) Suppose that H(QO y) = hi , equation (0. 1)
has one smooth periodic wave solution.

(iv) Suppose that 2€ (A1, 0) , equation(0. 1) has
two families of smooth periodic wave solutions.

(5) Corresponding to Fig. 3(g).

(i) Suppose that /& (/1 ,h3) , equation(0. 1) has

Guangxi Sciences, Vol. 15 No. 3, August 2008



one family of smooth periodic wave solutions.

(ii) Suppose thath€ (0,+ =), equation(0. 1)
has one family of global smooth periodic wave
solutions.

(iii) Suppose that H(O,y) = h3 , equation (0. 1)
has one periodic travelling wave solution.

(iv) Suppose thath & (h3,0) , equation( 0. 1) has

two families of smooth periodic wave solutions.

- p+t A

the transformation O= O- ) , similar to

the cases (5),we obtain all parametric representations
of the periodic wave solutions of equation(0. 1).

( 10) Corresponding to Figs. 3(d) and ( e), similar
(4). we

representations of the periodic wave solutions of

to the cases obtain all parametric

equation( 0. 1).

(6) Corresponding to Fgs 3(i) and (n).
(i) Suppose thath€ (0,h2) , equation(0. 1) have

two families of smooth periodic wave solutions. (1]

References

Wu T Y, Zhang ] E, Cook L P,et al. On modelling

nonlinear long waves[ Jl Math is for Solving Problems,

SIAM, 1996,233-241.
[2] He B,Xu C. New solitary solutions of combined KdV and

(ii) Suppose that A& (h2, + =) , equation(0. 1)
has one family of smooth periodic wave solutions.

(7) Corresponding to Figs. 3(j) and (o). Suppose
that k& (0,h2) orhE (h2,+ ©°) ,equation(0. 1) has
two families of smooth periodic wave solutions. 3]

( 8) Corresponding to Figs 3(h) and (m).
Suppose thath& (hi,0) orh< (h3,0) andhE (0,+ [4]

o) , equation ( 0. 1) have two families of smooth

mKdV equations and water wave equations [ J]. J
North west University Natural Science, 2005, 4t 25-27.
Perko L. Diff erential equations and dynamical systems
[M]. New York Springer-Verlag, 1991.

Chow S N, Hale J K. Method of bifurcation theory [M ].
New York Springer-Verlag, 1981.

periodic w ave solutions.

(9) Corresponding to Figs. 3(a) and (b), by using ( : )

A MNAZE R E AR B FR B AR AR T A E B4 RIS NIRAT T BT E R E 2R A
S B A A SR R fe ot RARAOL £ F RENARAP G LFARARTE L RARAS 22
B AT A X £ N AZ 6 3L Fo B0 18 T AR BL AN A A ANAZAF LA de b 32 69 NAZRE 7). 383858 F a8 769 stk
(EICAVBIL R A #rh N AZ IR — 7B DLIAA N5 Heby RECER 2 518 98 5k Fil T sEALTEIK REC Hifk
71 mAe R T AR RA TAKFEIE S 342 AR RS T F A AHNAZ ZBBLOAT R MM 49
o A BARY AR Ao A R R X A RBT KR L MRS SR ATIE R 2R RAEAFR FRAA,
FET) Rl o LA B ISP RN AR Bk F B (Centaurea maculosa ) NAZAT BG4 E K 3R B A=sE 48 /13 T
JR YRR A2 RNAZFPEE 209 SE AR )9 R KRB Ak ) TEAR A R 849, 4B R N A2 AT 2F 3T R
M R B AR ) BB TR T HAT B N RER AT Hdr B R SRR (Fubd ) Ak AT T AT R EGY Sk
(FHHE ) NAZFY B2 69 RECT #0he 1 5 s 69 5 B A d R ATk & 2 B meget A Fe S 89t £ X, NZAP 2
893X S A5 M R B AR E S A, 3 N R 3EARSE FAE )69 B RE Rd AL = AT R A K Flp fps
BLAGAR MR & FHM. X EBANASFEIRAR .5 EICABRAELARR , 55 2 A% R 469 85 B # R
AT B b FHR B Jeha X ATUBRAY AT
(FEATF B4R )

A 20084 8H % ISEF 34 243



