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The Optimal Approximation Solution of Matrix Inverse
Problems for D-symmetric Semidefinite Matrices
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Abstract For given A € R, when the set of solution of the matrix equation AX = B in

D SR "

is nonempty, the optimal approximation solution of 4

in Si is given, and a numerical

example is performed to illustrate the validity of the optimal approximation solution.
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: A€ R, AX= B
A Sy s
D
: 02416 : A
Matrix inverse problems and its optimal

approximation problems have been widely used in

control theory, vibration theory, civil structure

nonlinear programming and the other
. 4
fields: There are many results .

The following notations are used throughout this
paper.

Let R* " denotes the set of 2< m real matrices,
OR"" denotes the set of nX
matrices, SR " denotes the set of #< 7 real symmetric

engineering,

n real orthogonal

matrices. R0 " denotes the set of n X m real

semidefinite ( need not symmetric) matrices. A
denotes Moore—Penrose generalized inverse of matrix
A. We denote the set of nX n real positive definite
symmetric matrices and real semidefinite symmetric
matrices by SR " and SRb " respectiv ely, that is

SR'"= {4l A€ SR ".X"4Xx> 0,V X€ K,
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X7 0},

SR "= {4l 4€ SR ",X'4x= 0¥ X€ R},
and denote the set of nX n real negative semidefinite
symmetric matrices by SR, that is,

SK "= (4l 4€ SE'", X' AX< 0,Y X€ R).

One denotes by A> 0(or A= 0) AS SR " (or
A€ SR ).

Definition 0. 1°'  GivenD= diag(di,d2 - , dn)
€ R "d> 0,i= 1,2 ,n, for A€ K ", Ais called
a Dsymmetric matrix ifD’4= SR"".

We denote the set of all D-symmetric matrices by

SR

Definition 0. 2°'  Theset D" SR " is defined as

follows

D SR "= {A€ D 'SR X'DAxX= 0,V X
€ R}J.

Let D °SK "= {4€ D SR " X'D’AX< 0,
Vxe Hjy.

A is called a D-semidefinite symmetric matrix if 4
€ D’SH ", and 4 is called a D-negative semidefinite
symmetric matrix if A& D~ SR

It is easy to verify that D~ SR "< R ", and
when D= 1., D’ SR "= B ". Therefore, SE) "<
D SR "

In reference [7], we studied the following matrix
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inverse problem concerned with D-semidefinite

sy mmetric matrix.

Problem|  Given X,BE R ", find the
condition for the solvability of the matrix equation

AX = B, (0.1
and the general forms of solution 4 in the set of D-
semidefinite symmetric matrix.

Because D-semidefinite symmetric matrix is a
kind of matrices within semidefinite symmetric matrix
and semidefinite (need not symmetric) matrix, it is
very meaningful to study this kind of matrices.

Based on reference [ 7], the optimal approxim—
ation problems and its numerical solution for D-
semidefinite symmetric matrices are discussed in this

paper. The main problem is described as follows

Problemll  Given4 € R'", find A€ S,
such that

l4a- 4 ll= Argisr;llA—A* I, (0.2
where Si is the set of solutions of Problem I, Il * Il is

Frobenius norm.

1 Lemmas

Given matricesX ,BE R " ,D= diag(di,d2, -,
)€ R ", d> 0,i= 1,2 ,n.
value decomposition (SY D) of the matrix D’X be

V= Uy, W, (L))

wherez = diag( &, %, , %),

Let the singular

D*X =

€> 0,i= 1,2, ,k,

k= rank(X),U= (Ui, U)€ OR " V= (V1,V2)E€
OR" ", Ui€ R, 7A€ R"". Suppose the partition
of B= U'BVis
Be U'BV- B Bn (1.2)
By By’ '
where B € RM,Ble Rx(mfk),lee H"ik%k,Bzz
c R(”- kp< (m= k)

Lemma 1. 1" Suppose that the SVD of the
matiix D°X is the form of formulae( 1. 1) and the
pattition of B = U'BV is given by formulae( 1. 2).

Then Problem Iis solvable inD™ >SK' " if and only if

Bi= O,Bn= O, (L3
B, '€ SH*, (1.4
ank(BY, >, Bh) = rank(Bn). (L 5)

Moreover, the general expression of solution of

ProblemI s
A=
J A

2008 8 H 158% 3

BlE .
BzE -

Z 71331

B> By 'y > B

0
D'+ U'D, (1. 6)
where GE SRy "1
Lemma 1. 2*  Given a nonempty closed convex

cone S& RK”, and FE RX”,A = diag(_1, 2, ,
a),_i> 0,i= 1,2,

,n. Then there exists a unique

optimal approximation E€ S such that
I(E - F)Al= minl(E - FAIL (1.7)

2 The sol ution of problem I

Theorem 2. 1 Suppose conditions of Lemma 1. 1
hold. Let
Ao =
BIE - i lBgl UTD2
B>, | B, (B2, V>, 'Bh ’
(2.1
and
E= U:GU),F= (A - 4)D > A= D’
(2.2
Then there exists a unique optimal approximation 4 in
S4 such that formulae(0.2) holds, and

0 T 2
A= Ao+ UubD, (2.3)
0
where G= U EUs, and E is the unique optimal

approximation solution of the least—squares problem
I(E - FAll= min, EE SK"
that is,

- All=  min - A
15~ FAlI= min lI(E = PALL

(2.4
PrOOf For any A€ Si, one has

{Ao+(/{ g plee sy " } (2.5)

Thus,
HA- 4 IP= 1l 4o+ U{ 3UD -4 =
IIL{ gUDZ (A - AP = ||[b{ ﬁ
(A4 - Ao)D *1D’IF.
Since U= (U1,U2) be an orthogonal matrix and the
properties of Frobenius norm, one has
la - A1 = llj.Gua - (4 -
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Ao)D DI,
By formulae( .2 2), one has
l4a- 4 ll= II(E- FAI (2 6)

. n .
Since SF " is a nonempty closed convex cone of

R ", by Lemma 1. 2,it is easy to see that there exists
a unique matrix E€ SF" such that

E - FAIl = Kr?fi{QnH(E— FAIL (27

10)
LetG= Ul EU2and A= Ao+ u{ jUTDZ. Then
o)

A is the solution of ProblemIl .
3 Algorithm and numerical exampl e

Now based on the method for solving least—
squares problem of matrix equation AX = B inSK ",

we can describe an algorithm for solving ProblemIl as

follows.

Given matrices 4,BE R" " ,D= diag(di,d2, ,
dn),di> 0,i= 1,2,--- ,n. Suppose there are solutions
of Problem I in D" >SK " and solution set Si is

defined in formulae( 2. 5).

Remark The key for solving numerical solution
of Problem Il is how to solve EE SK " such that
formulae ( 2 7) holds. The
introduced a kind of algorithm that is convergent and
given MATLAB program about it. The algorithm for
solving Problem I is described as follows.

Algorithm 1

Step I Compute F= (A - A0)D °A= D’.

reference [9] has

Step 2 Based on method in reference [9 ], find £
€ SR " such that

A — IAMl=  min 1EA — M.
E SRN

Step 3 Compute G= U2EU:, then Gin
SR =8 and the solution of ProblemIl is

0
A= Ao+ U'D*.
0
Example 1 Given matrices X,BE R *,DE
X 5
R~ as follows
1 01
0 1 1
X=10 00 0,
0 00
0 00
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1+ 1- 3 Lo
2 3 2 3 3
1- 3 1+ 3 Lo
2 3 2 3 3
B = 0 0 0 0>
1L 1 2
3 3 3
—1_ ——1_ 0 (
2 2

N

D= diag(0.1,0.1,0.2,0.5,0. 6).
It is easy to verify that the matrix inverse
problem AX = B has solutions in D" SR ", and the

solution set is

0
Si= {do+ L{O ﬁUTDzl GE SR °},

w her(;,

1+ 3 1- 3 0 25 36
2 3 2 3 3 2
l- 3 1+ 3 4 25 _ 36
2 3 2 3 3 2
Ao= 0 0 0 0 0o |-
oL s
3 3 3
—1_ - _1_ 0 0 36
2 2
and
1 L 0 0
2 2
—1_ — —1_ 0 0 [0
2 2
U= 0 0 S — 0 °
2 2
0 0 —1_ —1_ [0
2 2
0 0 0 0 1
1 1 L
6 2 3
S 1
V= 6 2 3
—2_ 0 - —1_ (
6 3
0 0 0 1
Let
A =
0.113 - 0. 853 1. 213 0755 - 02
- 0732 1. 256 - 0.385 0 814 0. 321
0. 645 - 0213 0. 356 1. 214 0. 876
1. 214 0. 832 - 0.726 0. 421 0. 568
- 0632 1. 120 - 0.326 0. 527 1. 231
€ R

Find A€ Si such that
Guangxi Sciences, Vol. 15 No. 3, August 2008



l4- 4 ll= miplld - 4 II.

Using Algorithm L, one can obtains EE SF °,

and
E=
424, 4835 15. 8588 10. 0580 - 35.4363 - 14.601
15. 8588 694. 3336 - 5.3892 - 40.3866  45. 2367
10. 0580 - 5.3892 12.4779 - 0.2686 - 0.5451
- 35.4363 - 40.3866 - 0.2686 51627 - 1. 3553
- 14.6015 45.2367 - 0.5451 - 1.3553 3. 5263
such that
I EA — AAll=  min 1EA — EAIL
E SRCn
By direct calculation, gne has
0 0 Q"
0 0 @
_1 _1
. = - —=
G= U, Elx = 2 2
—1_ —1_ [0
2 2
. 0 0 |
424. 4835 15. 8588 10.0580 - 35.4363 - 14. 601
15. 8588 694. 3336 - 5.3892 - 40.3866  45. 2367
10. 0580 - 53892 12. 4779 - 0.2686 - 0. 5451| -
— 35.4363 - 40.3866 - 0.2686 5.1627 - 1.3553
- 14. 6015 45. 2367 - 0.5451 - 1.3553 35263
0 0 (
0 0 (
T
2 2 =
T
2 2
g 0 0 |
8.5517 - 3.6576 - 1.343
- 36576 9.0889 - 0.572
— 13438 - 0.5729  3.5263
Thus, the solution of Praplem I is
0 T 2
A= Ao+ UD =
(0]

’

| 1 |

0.7887 - 0.2113 0. 0000 14. 4338 25. 4558
- 0.2113 0.7887 0. 0000 14. 4338 - 25.455
0. 0000 0. 0000 0.4991 - 0.0672 - 0.1962
0. 5774 0.5774 - 0.0107 30.1582 - 0.4879
0.7071 - 0.7071 - 0.0218 - 0.3388  37.2695

and minll4 - A4 ll= 48. 6474.
£s,

References

[1]

(2]

(31

(4]

(5]

[6]

(7]

[8]

91

Don F J H. On the symmetrc solution of a linear matrix
equation [J]. Linear Algebra and Its Applications, 1987,
93 1-7.

Berman A, Nagy E ] Improvement of a large analytical
model using test data[J]. ATAA J,1983,21F 1163-1172
Yuan Y X. The optimal solution of linear matix
equation by matrix decompositions [ J]. Mathematica
Numerica Sinica,2002,24 165-176

Dai Hua. Optimal correction of stiffness, flexibility

and mass matrices using vibration tests|[J]. Journal of
Vibration Engineering, 1988, 2( 1): 18-27.

Zhang Zhongzhi, Hu Xiyan, Zhou Fu Zhao. Least—
squares solutions of inverse problems for D=symmetric
matnces [ J].

Sciences Edition, 2001, 28( 5): 6-10.

Journal of Hunan University Natural

Liang Yanlai. D-semi-definite symmetric matrx and its
properties[ J]. Journal of Northeast Normal University
Natural Sciences Edition, 2003, 35( 5): 25-27.

Liang Yanlai. Solutions of inverse problems for D—
symmetric nonnegative definite matrices [ J]. Journal of
Central China Normal Universty: Natural Sciences,
2004, 38(3): 280-283.

Zhang Lei. A kind of inverse problems of matrices and its
numerical solution [ J]- Mathematica Numerica Sinica,
1987, 9( 4): 431-437.

Liang Yanlai. Study on inverse problem for positively D—
semidefinite symmetric matrices [ D ]. Dalian Dalian

University of Technology, 2008.

PR KT 2 ARG #7869 KL & BT B de AN TRE A L ) 47 2 89 B AR i S 1675 3] 3
R 8 Rw T a—— BRI G AL 2R A 6948 sy AP Rl AN, K4 2 /3T 2
AN S BA THE HEEHIR A D AT R 5AARA LLHRERM & 69 —0R G485, BH G 15 % 5] sk L) &
MBI KLY Go. XTUABACMNART MTEF AL % ML L ZR2E FloaBdhor E ZEGNTER
k. ST ILER 69 — AST RE 69 MEAR 2 K 20847 20 B sk Hul IF L 69 B4 7T AL LR T LK)

A 20085 88 F 155 % 3

(FAtF o R )
253



