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Abstract A new class of generalized convex functions, which are called zero—set quasi—convex

functions are defined,and some of their basic properties are discussed- According to the properties of

the functions, sufficient optimality conditions for the nonlinear zero—set quasi-convex programming

with inequality constraints are given.
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Comvexity plays a vital role in many aspects of
mathematical programming, for example, sufficient
optimality conditions and duality theorems. Over the
years,  many generalized convexities were
presented[1~ “'In this paper, we introduce a new class
of functions, which are called zero—set quasi-eonvex
functions and present some results of them. The
results of optimality in zero—set quasi-eonvex
programming problems with inequality constrains are
established.

In the following, we review several concepts of
generalized convexity which have some relationships
with zeroset quasi—convexity. In this paper, we

assume that the set S= R'is a nonempty convex set.
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1 Definitions

Definition 1. 1°' A real function f: S& R— R

is said to be quasiconvex function,if
SOx+ (1= My)<< max{f(x).f(»)}.Yx.,p
€ s,Vae (0,1).

Definition 1. 2°'  Let £ S K—> Rbe a
differentiable function. f is said to be pseudo—convex
function.if V x,y€ S withvf(x)T(y - x)= Oone
can get f ()= f(x).

2 Zero-Set quasi-convex functions and their
properties

In this section, we present the definition of zero—

set quasitonvex function and discuss its main
properties.

Definition 2. 1 A functionf: S> Ris said to be

zero—set quasi-convex onZ ,if

FOx+ (1-X)p)< max{f(x).f(y)}.Vx€E
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z,¥ ye S,Yre [0,1],
where Z& (x€ 8 f(x)= 0).

Proposition 2. 1 If f(x) is a quasitonvex
function and Z= {x| f(x)= 0}~ N ,thenf(x) isa
zero-set quasi-eonvex function on Z.

Remark 2. 1 The converse of Proposition 2. 1 1is
not necessarily true A counterexample is given as

follow s
Example 2. 1 Let f: R> Rbe defined as
(x+ 1)’ = 2,x< 0,
fx)= 2
x-1D"= 2x> 0
The graph of the function f is shown in Fig. 1
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Fig. 1

Function f

Letxi= - Lx2= LAo= _é then

SRoxi+ (1 = Ao)x2) = f(0) =- 1>
max {f (x1), f(x2)} = - 2
So, f is not a quasi-convex function. On the other
hand, from Fig. 1, one can see that f is a zero—set
quasi—convex function (one can also get from Theorem
22).

Proposition 2. 2 Let f: S~ R(i= 1,2, ,m)
be zero-set quasi-convex on Z = {x‘fi(x) = 0}J(i=
1,2 .m) and Z =N £1Z7# N, then f(x) =
max {fi(x),i= 1,2,--- ,m} is a zero—set quasi-convex
onZi. e,

[Ox+ (1= N)y)= max{f(x).f(»)},VxE
zZ,¥ ye S.ac [0, 1],
where S=1 Z18.

Proof FYorV x& Z,Vy€ SandVAE [0,1],
from the zero-set quasi—convexity of fi(x), we have

f@x+ (1= A)y)= max{fiAx+ (1-A4)y),
i= 1,2, ,m}< max{max {fi(x),fi(y)},i= 1,2,
«,m} = max{max {fi(x),i =
{fily).i= 1,2, . m}p} = max {f(x).f(y)}.
So, f (x) is zero—set quasi tonvex onZ.
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Theorem 2. 1
zeroset quasi-convex function on Z= {(xlf(x)= 0},

then So = {X‘f(X)< 0} is a convex set.

If continue function f (x) is a

Proof Suppose Sois not a cowex set, then there
exist x,y€ 9,X& (0, 1) ,such that f (Xx + (1-
Ay)> 0.1 f(x)= Oorf(y)=
zero-set quasi-comvexity of f (x) we havef Xx+ (1-

Ny)y= max{f (x).f(¥)}< 0 Sof(x).f(y) <O
By the continue property of f(x), one knows that

there exist_€ (0.X),®€ (X, 1), such that

fCx+ (1= )y)= 0./ (%+ (1= ®y)=0
Letx= x+ (1- )y, y= &+ (1- ©)y, onecan
easily know that there existho € (0,1) such thatAax
+ (1-2Ao)y=Xx+ (1-X)y.

On the other hand,

[0+ (1-X)y) = fRox+ (1- do)y)<
max {f (x).f () }.
This is a contradiction. So, So= {x| f(x)<< 0} is a
convex set.

Theorem 2.2 Letf: S~ R 1IfSr= {xl f(x)<
Tx € S}is a convex set for eacch = 0 and Z =
(x| f(x)= 0}~ X, then f(x) is a zero-set quasi—
convex function on Z.

Proof For Vx€ ZVy€ S. Lea b =
max{f(x),f(y)}= 0, thenx,y& Sr. So, from the
convexity of ST, , we haveAx+ (1- A)y€ S,V AC
[0, 1], i e, fAx+ (1= A)y)< b= max{f(x),
f.vae 1o 1]

com pleted.

0, then from the

The proof of this theorem is

Theorem 2.3 Let f: S> Ris zero—set quasi—
convex onZ = {x‘ f(x)= 0} .1 f is differentiable,
then forV x&€ Z,V y&€ §,we have

(iff (»)= 0. thenVf(x) (y= x)< 0:

(i)if f (»)= 0, thenV f(¥) (x - y)=< 0;

(i) if V f (x)" (v = x)> 0, thenf (¥)> 0;

(v)ifV f(y)"(x = ) <0, thenf(y) < O.

Proof It is obviously that (i) and (ii) , (ii) and
(iv) are equivalent. It is only need to show the
statements (i) and (1ii).

(i) Supposex& Z,y€ Sandf(y)<< 0,then,

Vi) (y- x)= flxy - x)=
f(x+ A(v—=x)) - f(x)

lim B
Py A
omax{f(x).f(»)} = f(x)

im A = 0

The statement (i) holds.
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(1) The proof is similar with (i) . The proof of

this theorem is com pleted.
3 Optimality conditions

In this section, we apply the associated results to
the nonlinear programming problem with inequality
constraints as follows
min f(x)

(k) st g(x)< 0,i€ I=
x€ R.

Denote the feasible set of (Pg) by Se= {x& Rl gi(x)

<. 0,i€ I} . For convenience of discussion, we always

{1,2’... 7}/n} s

assume that f and g are all differentiable and Sg is a
nonempty set in K .

Theorem 3.1 1Ifgi(x) (i< [) are zero-set quasi—
convex functions, then the feasible set & of problem
(B) is a convex set.

Proof Let S= {xlg(x)<< 0},i€ I, from
Theorem 2. 1, one knows that § (i€ ) are all convex
sets. So, Se =[] €185 is a convex set.

Theorem 3. 2 Assume thatx isa KKT point of
(B) , and the function f(x) is differentiable and
pseudo—convex, gi(x)(i € I) are differentiable and
zero—sel quasi-convex, thenx is an optimalsolution of
the problem ( F).

fori€ I(x ).
Sincex is the KKT point of ( B ), there exist
multipliers u== 0 such that

Vf(x* )+ Z ungi(x* ) = O,Migi(x* )= 0.

IS

From the above equation, we have
VI =X )= - 2wV el ) (-
X )= -2 uVe ) (x-x)= 0
£ I(x")
Hence from the pseudo—convexity of f(x) , one can
conclude f (x)= f(x ). Thereforex is an optimal
solution of the problem ( Pz ) .
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