Zero-set Quasi-convex Functions and the Optimality Conditions of Zero-set Quasi-convex Programming 零集拟凸函数和零集拟凸规划的最优性条件

CHAO Mian-tao¹, LIANG Dong-ying² 晁绵涛¹,梁东颖²

(1. Department of Mathematics and Computer Science, Guangxi College of Education, Nanning, Guangxi, 530023, China; 2. Guangxi Vocational and Technical College of Communications, Nanning, Guangxi, 530004, China)

(1.广西教育学院数学与计算机科学系,广西南宁 530023; 2.广西交通职业技术学院,广西南宁 530023)

Abstract A new class of generalized convex functions, which are called zero-set quasi-convex functions are defined, and some of their basic properties are discussed. According to the properties of the functions, sufficient optimality conditions for the nonlinear zero-set quasi-convex programming with inequality constraints are given.

Key words convex function zero-set quasi-convex function, zero-set quasi-convex programming, optimality conditions

摘要: 定义一种广义凸函数: 零集拟凸函数,讨论其相关性质,并结合函数性质给出零集拟凸不等式约束规划的最优性条件.

关键词: 凸函数 零集拟凸函数 零集拟凸规划 最优性条件

中图法分类号: 0224 文献标识码: A 文章编号: 1005-9164(2008) 03-0263-03

Convexity plays a vital role in many aspects of mathematical programming, for example, sufficient optimality conditions and duality theorems. Over the years, many generalized convexities were presented [1-4]. In this paper, we introduce a new class of functions, which are called zero-set quasi-convex functions and present some results of them. The results of optimality in zero-set quasi-convex programming problems with inequality constrains are established.

In the following, we review several concepts of generalized convexity which have some relationships with zero-set quasi-convexity. In this paper, we assume that the set $S \subseteq \mathbb{R}^n$ is a nonempty convex set.

1 Definitions

Definition 1. $\mathbf{1}^{[2]}$ A real function $f: S \subseteq \mathbb{R}^n \to \mathbb{R}$ is said to be quasi-convex function, if

$$f(\lambda x + (1 - \lambda)y) \leq \max\{f(x), f(y)\}, \forall x, y \in S, \forall \lambda \in (0, 1).$$

Definition 1. 2^[2] Let $f: S \subseteq \mathbb{R} \to \mathbb{R}$ be a differentiable function. f is said to be pseudo-convex function, if $\forall x, y \in S$ with $\nabla f(x)^T (y - x) \geqslant 0$ one can get $f(y) \geqslant f(x)$.

2 Zero-Set quasi-convex functions and their properties

In this section, we present the definition of zeroset quasi-convex function and discuss its main properties.

Definition 2. 1 A function $f: S \rightarrow Ris \text{ said to be}$ zero—set quasi-convex on Z, if

$$f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}, \forall x \in$$

收稿日期: 2008-01-17

作者简介: 晁绵涛 (1981-),男,硕士,主要从事最优化理论与方法研究工作

 $Z, \forall y \in S, \forall \lambda \in [0, 1],$ where $Z \subseteq \{x \in S \mid f(x) = 0\}.$

Proposition 2.1 If f(x) is a quasi-convex function and $Z = \{x \mid f(x) = 0\} \neq \emptyset$, then f(x) is a zero-set quasi-convex function on Z.

Remark 2. 1 The converse of Proposition 2.1 is not necessarily true A counterexample is given as follows.

Example 2. 1 Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined as
$$f(x) = \begin{cases} (x+1)^2 - 2, x \leq 0, \\ (x-1)^2 - 2, x > 0. \end{cases}$$

The graph of the function f is shown in Fig. 1

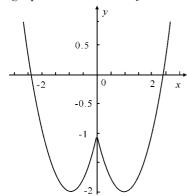


Fig. 1 Function f

Let
$$x_1 = -1$$
, $x_2 = 1$, $\lambda_0 = \frac{1}{2}$, then
$$f(\lambda_0 x_1 + (1 - \lambda_0) x_2) = f(0) = -1 > \max\{f(x_1), f(x_2)\} = -2.$$

So, f is not a quasi-convex function. On the other hand, from Fig. 1, one can see that f is a zero-set quasi-convex function (one can also get from Theorem 2.2).

Proposition 2.2 Let $f: S \to \mathbb{R}(i = 1, 2, \dots, m)$ be zero-set quasi-convex on $Z = \{x \mid f_i(x) = 0\} (i = 1, 2, \dots, m) \text{ and } Z = \bigcap_{i=1}^m Z_i \neq \emptyset, \text{ then } f(x) = \max\{f_i(x), i = 1, 2, \dots, m\} \text{ is a zero-set quasi-convex on } Z \text{ i. e.},$

 $f(\lambda x + (1 - \lambda)y) \leqslant \max\{f(x), f(y)\}, \forall x \in Z, \forall y \in S, \lambda \in [0, 1],$ where $S = \bigcap_{i=1}^{m} S_i$.

Proof For $\forall x \in Z, \forall y \in S \text{ and } \forall \lambda \in [0,1]$, from the zero-set quasi-convexity of $f_i(x)$, we have $f(\lambda x + (1-\lambda)y) = \max\{f_i(\lambda x + (1-\lambda)y), i = 1, 2, \cdots, m\} \leq \max\{\max\{f_i(x), f_i(y)\}, i = 1, 2, \cdots, m\} = \max\{\max\{f_i(x), i = 1, 2, \cdots, m\}, \max\{f_i(y), i = 1, 2, \cdots, m\}\} = \max\{f_i(y), f_i(y)\}.$

So, f(x) is zero-set quasi-convex on Z.

Theorem 2. 1 If continue function f(x) is a zero-set quasi-convex function on $Z = \{x | f(x) = 0\}$, then $S_0 = \{x | f(x) \le 0\}$ is a convex set.

Proof Suppose S_0 is not a convex set, then there exist $x,y\in S_0$, $\overline{\lambda}\in (0,1)$, such that $f(\overline{\lambda x}+(1-\overline{\lambda \lambda})y)>0$. If f(x)=0 or f(y)=0, then from the zero-set quasi-convexity of f(x) we have $f(\overline{\lambda \lambda}x+(1-\overline{\lambda \lambda})y)\leqslant \max\{f(x),f(y)\}\leqslant 0$. So f(x),f(y)<0. By the continue property of f(x), one knows that there exist $\overline{k}\in (0,\overline{\lambda \lambda})$, $\overline{k}\in (\overline{\lambda \lambda},1)$, such that

 $f(\bar{x} + (1 - \bar{y})y) = 0, f(\bar{x} + (1 - \bar{y})y) = 0.$ Let $\tilde{x} = \bar{x} + (1 - \bar{y})y$, $\tilde{y} = \bar{x} + (1 - \bar{y})y$, one can easily know that there exist $\lambda_0 \in (0, 1)$ such that $\lambda_0 \tilde{x} + (1 - \lambda_0)\tilde{y} = \lambda \bar{x} + (1 - \lambda)y$.

On the other hand,

 $f(\widetilde{\lambda x} + (1 - \widetilde{\lambda y})) = f(\widetilde{\lambda x} + (1 - \lambda x)\widetilde{y}) \le \max\{f(\widetilde{x}), f(\widetilde{y})\}.$

This is a contradiction. So, $S_0 = \{x \mid f(x) \le 0\}$ is a convex set.

Theorem 2. 2 Let $f: S \rightarrow \mathbb{R}$. If $S^T = \{x \mid f(x) \le T, x \in S\}$ is a convex set for each $T \geqslant 0$ and $Z = \{x \mid f(x) = 0\} \neq \emptyset$, then f(x) is a zero-set quasiconvex function on Z.

Proof For $\forall x \in Z, \forall y \in S$. Let $\mathbb{T}_0 = \max\{f(x), f(y)\} \geqslant 0$, then $x, y \in S_{\mathbb{T}_0}$. So, from the convexity of $S_{\mathbb{T}_0}$, we have $\lambda x + (1 - \lambda)y \in S_{\mathbb{T}_0}$, $\forall \lambda \in [0, 1]$, i. e., $f(\lambda x + (1 - \lambda)y) \leqslant \mathbb{T}_0 = \max\{f(x), f(y)\}, \forall \lambda \in [0, 1]$. The proof of this theorem is completed.

Theorem 2. 3 Let $f: S \rightarrow \mathbb{R}$ is zero-set quasiconvex on $Z = \{x \mid f(x) = 0\}$. If f is differentiable, then for $\forall x \in Z, \forall y \in S$, we have

(i) if
$$f(y) \leqslant 0$$
, then $\nabla f(x)^T (y - x) \leqslant 0$;
(ii) if $f(y) \geqslant 0$, then $\nabla f(y)^T (x - y) \leqslant 0$;

(iii) if
$$\nabla f(x)^T(y-x) > 0$$
, then $f(y) > 0$;

(iv) if
$$\nabla f(y)^T(x - y) < 0$$
, then $f(y) < 0$.

 $\begin{array}{lll} \textbf{Proof} & \text{It is obviously that (i) and (iii), (ii) and} \\ \text{(iv)} & \text{are equivalent.} & \text{It is only need to show the} \\ \text{statements (i) and (ii).} \end{array}$

(i) Suppose
$$x \in Z, y \in S$$
 and $f(y) \le 0$, then,
$$\nabla f(x)^{T}(y-x) = f'(x; y-x) = \lim_{\lambda \to 0} \frac{f(x+\lambda(y-x)) - f(x)}{\lambda} \le 1$$

$$\lim_{\lambda \to 0} \frac{\max\{f(x), f(y)\} - f(x)}{\lambda} = 0.$$

The statement (i) holds.

(ii) The proof is similar with (i). The proof of this theorem is completed.

Optimality conditions

In this section, we apply the associated results to the nonlinear programming problem with inequality constraints as follows

(Pg) min
$$f(x)$$

s. t. $g_i(x) \leq 0, i \in I = \{1, 2, \dots, m\},$
 $x \in \mathbb{R}^n$.

Denote the feasible set of (P_s) by $S_s = \{x \in \mathbb{R}^l | g_i(x)\}$ $\leq 0, i \in I$. For convenience of discussion, we always assume that f and g_i are all differentiable and S_g is a nonempty set in R^n .

Theorem 3.1 If $g_i(x)$ ($i \in I$) are zero-set quasiconvex functions, then the feasible set S_{8} of problem (Pg) is a convex set.

Proof Let $S = \{x \mid g_i(x) \leq 0\}, i \in I$, from Theorem 2. 1, one knows that $S(i \in I)$ are all convex sets. So, $S_g = \bigcap \in IS$ is a convex set.

Theorem 3. 2 Assume that x^* is a KKT point of (P_g) , and the function f(x) is differentiable and pseudo-convex, $g^{i}(x)$ ($i \in I$) are differentiable and zero-set quasi-convex, then x^* is an optimal solution of the problem (P_g) .

Proof For any $x \in S_g$, we have $g_i(x) \leq 0 =$ $g_i(x^*)$, $\notin I(x^*) = \{i \in I | g_i(x^*) = 0\}$. Therefore, from the zero-set quasi-convexity of $g_i(x)$, $x \in S_g$ and Theorem 2. 3, one can obtain $\nabla g_i(x^*)^T(x-x^*) \leq 0$ for $i \in I(x^*)$.

Since x^* is the KKT point of (P_g) , there exist multipliers $u \ge 0$ such that

$$\nabla f(x^*) + \sum_{i \in I} u_i \nabla g_i(x^*) = 0, u_i g_i(x^*) = 0.$$

From the above equation, we have
$$\nabla f(x^*)^T(x-x^*) = -\sum_{i \in I} u_i \nabla g_i(x^*)^T(x-x^*) = -\sum_{i \in I(x^*)} u_i \nabla g_i(x^*)^T(x-x^*) \geqslant 0.$$

Hence from the pseudo-convexity of f(x), one can conclude $f(x) \ge f(x^*)$. Therefore x^* is an optimal solution of the problem (P_g) .

References

- [1] Bector C R, Suneja S K, Lalitha C S. Generalized $B \rightarrow vex$ functions and generalized B -vex programming [J]. Journal of Optimization Theory and Applications, 1993, 76(3): 561-576.
- [2] Bazaraa M S, Sherali H D and Shetty C M. Nonlinear programming theory and algorithms second edition[M]. the United States of America John Wiley and Sons, 1993.
- [3] Youness E.A. E-convex sets, E-convex functions and E-convex programming [J]. Journal of Optimization Theory and Applications, 1999, 102(2): 439-450.
- [4] Jian J B. On (E, F) generalized convexity [J]. International Journal of Mathematical Sciences, 2003, 2(1): 121-132.

(责任编辑: 尹 闯)

(上接第 262页 Continue from page 262)

- [6] 甘作新,葛渭高.多非线性区间 Lurie系统的鲁棒绝对稳 定性 [1].辽宁师范大学学报: 自然科学版, 2000, 23(1): 9-14.
- [7] 马克茂,王清,带有时滞的区间 Lurie系统的鲁棒绝对稳 定性分析 [J].哈尔滨工业大学学报, 2006, 38(2): 170-173.
- [8] 马克茂.区间系统鲁棒绝对稳定性分析 [J].系统工程与 电子技术, 2006, 28(2): 280-283.
- [9] 黎克麟,曾意.具有多滞后的区间非线性 Lurie控制系统 的鲁棒绝对稳定性[1].四川师范大学学报,2007,30(1): 27-30.
- [10] 俞立.鲁棒控制──线性矩阵不等式处理方法 [M].北 京: 清华大学出版社, 2002 6-22.

(责任编辑: 尹 闯)