广西科学 Guangxi Sciences 2009, 16(1): 7~ 8

Some New Nonhamilton Graphs^{*} 一类新的非哈密顿图

TANG Gan-wu¹, TANG Gao-hua², WANG Min³ 唐干武¹, 唐高华², 王 敏³

(1. Department of Mathematics and Computer Science, Guilin Normal College, Guilin, Guangxi, 541001, China; 2. Department of Mathematics and Computer Science, Guangxi Teachers Education University, Nanning, Guangxi, 530023, China; 3. Department of Mathematics and Information Science, Yantai University, Yantai, Shandong, 264005, China.)

(1.桂林师范高等专科学校数学与计算机科学系,广西桂林 541001;2.广西师范学院数学与 计算机科学系,广西南宁 530023;3.烟台大学数学与信息科学系,山东烟台 264005)

Abstract A class of famous nonhamilton-graphs $K_m \vee (\overline{K}_m + K_{n-2m})$ ($\leq m \leq \frac{n}{2}$) have been extended to $K_s \vee (\sum_{i=1}^{s} K_{m_i})$ ($\sum_{i=1}^{s} m_i = n - s, n \geq 3$, $\leq s \leq \frac{n-1}{2}$) and their simple properties are discussed. Key words nonhamilton-graphs, $C_{n,m}$ -graphs, $R_{n,n}$ -graphs

摘要:把非哈密顿图 $K_m \vee (\overline{K}_m + K_{n-2m}) (\le m \le \frac{n}{2})$ 扩充为 $K_s \vee \sum_{i=1}^{m-1} K_{m_i}) \sum_{i=1}^{m-1} m_i = n - s, n \ge 3, \le s \le \frac{n-1}{2}),$ 并讨论此类图的简单性质. 关键词:非哈密顿图 $C_{n,m}$ 图 $R_{s,n}$ 图 中图法分类号: 0.157.5 文献标识码: A 文章编号: 1005-9.164(2009) 01-0007-02

Bondy. J. A and Murty. U. S. $\mathbb{R}^{[1]}$ have defined a class of graphs $K_m \lor (\overline{K}_m + K_{n-2m})$ which is denoted by $C_{n,m} (\leqslant m \leqslant \frac{n}{2})$, and have proved that the $C_{n,m}$ is a class of nonhamilton graphs. In this paper, we denote $K_s \lor (\sum_{i=1}^{s} K_{m_i})$ graph as $R_{s,n}$ and if $m_1, m_2, \cdots, m_{s+1}$, where $\sum_{i=1}^{s} m_i = n - s, i \geqslant 3, i \leqslant \frac{n-1}{2}.$

1 Prel iminaries

Suppose G is a simple undirected graphs, V(G)

作者简介:唐干武 (1962-),男,副教授,主要从事图论及概率统计研究工作。

 * Supported by the Foundation of Guangxi Natural Sciences (0221029) and the Foundation of Guangxi Educational Department (200807M S032).

广西科学 2009年 2月 第 16卷第 1期

and E(G) denote vertex set and edge set in graph Grespectively. We say G is a (p, p - k)-graph if |E(G)| = |V(G)| - k, where k is integer. A mpartite graph is that whose vertex set can be partitioned into m subsets and no edge has both ends in any one subset. A simple graph is said to be a complete m-partite graph if it satisfies that each vertex is joined to every vertex that is not in the same subset. The number of edges in graph G is denoted by X(G), i.e., X(G) = |E(G)|. Let k(G) denote the number of components in graph G, G denote the complement of graph G, K_n denote the complete graph with *n* vertices. The union of G_1, G_2, \cdots, G_k , is denoted by $G \cup G \cup \cdots \cup G_k$ and when G_1, G_2, \cdots, G_k are pairwise disjoint, $G \cup G \cup \cdots \cup G_k$ is denoted by $G + G_2 + \cdots + G \text{ or } \sum_{i=1}^{k} G$. We say the graph is the join of pairwise disjoint graphs G_1, G_2, \cdots, G_k , which

收稿日期: 2008-05-05

is obtained by joining each vertex of G to every vertex of G^{1+} G^{2+} $\cdots + G^{-1+}$ G^{-1+} $\cdots + G^{-1+}$ for any $i \in \{1, 2, \cdots, k\}$ in G^{1+} G^{2+} $\cdots + G^{-1+}$ and denote as G^{1} $\forall G_{2} \forall \cdots \forall G_{k}$. A Hamilton cycle of graph G is a cycle that contains every vertex of graph G. A graph is a Hamilton graph if it contains a Hamilton cycle A graph is a nonhamilton graph if it doesn t contain any Hamilton cycle. Other notations and terminologies not defined here can be found in reference [1].

Lemma 1. $\mathbf{1}^{[1]}$ Suppose G is a Hamilton graph, then $k(G-D) \leq |D|$ for every nonempty proper subset D of V(G).

2 Main results

In the following, we prove that $R_{n,n}$ -graphs are nonhamilton graphs and discuss its some properties. Furthermore, $R_{n,n}$ is a bigger class than $C_{n,m}$.

Lemma 2.1 Let G be a complete m-partite graph with n vertices. We deonte the complete m-partite graph with n vertices as $T_{m,n}$ which satisfies that the number of vertices of a part is more than one, and the rest is only one. Then we get $X(G) \ge X(T_{m,n})$, with equality only if G is isomorphic to $T_{m,n}$.

Proof Suppose G is a complete *m*-partite graph with *n* vertices, and the numbers of vertices of each parts are n_1, n_2, \dots, n_n respectively. Without loss of generality, suppose $n \le n_2 \le \dots \le n_m$, if G isn t isomorphic to $T_{m,n}$, then there exists $i \in \{1, 2, \dots, m-1\}$ such that n > 1. Let's consider complete *m*partite graph with *n* vertices G which the numbers of vertices of each parts are $n_1, n_2, \dots, n_i - 1, \dots, n_m + 1$, respectively, then

$$X(G_{1}) = \frac{1}{2} \sum_{k=1, k \neq i}^{m-1} (n - n^{k}) n^{k} + \frac{1}{2} (n - n^{k} + 1) (n^{i} - 1)^{k} + \frac{1}{2} (n - n^{k} - 1) (n^{k} - 1)^{k} + \frac{1}{2} (n - n^{k} - 1) (n^{k} - 1)^{k} + \frac{1}{2} (n - n^{k} + 1)^{k} + \frac{1}{2} \sum_{k=1}^{m} (n - n^{k}) n^{k} + \frac{1}{2} \sum_{k=1}^{m} (n - n^{$$

If G is isomporphic to $T_{m,n}$, then Lemma 2. 1 holds. Otherwise, we continue above process until n_j = 1 for any $\notin \{1, 2, \dots, m-1\}$, then we obtain the graph is $T_{m,n}$. Noting that the edges of graph which we obtain by above process is reducing gradually to ε $(T_{m,n})$. So we complete the proof of Lemma 2. 1.

Theorem 2.1 $C_{n,m}$ is a subset of $R_{s,m}$.

Theorem 2. 2 $R_{S,m}$ is a class of nonhamilton graphs.

Theorem 2.3 The inequality $X(\overline{R}_{s,n}) \ge \frac{1}{2}s(2n - 3s - 1)$ is true

Theorem 2. 4 Let $R_{5,n}$ be a (p,q)-graph, where q is less than or equal to p+1, then s is less than or equal to 4. Further, when s is unequal to 1, then n is bigger than or equal to 5 and is less than or equal to 9.

Proof of Theorem 2.1 Because of the denotations of $C_{n,m}$ and $R_{s,n}$, therefore $C_{n,m}$ is a special case of $R_{s,n}$, i. e. $C_{n,m} = R_{m,n(1,1,\cdots,1,n-2m)} = K_m \vee$ $(\sum_{i=1}^{m} K_1 + K_{n-2m})$. So $C_{n,m}$ is a subset of $R_{s,n}$. We complete the proof of Theorem 2. 1.

Proof of Theorem 2. 2 We denote the subset K_s which contains svertices of $V(R_{s,n})$ as D, then we have $k(R_{s,n} - D) = s + 1 > |D|$. By Lemma 1. 1, $R_{s,n}$ is a nonhmailton graph. So we complete the proof of Theorem 2.2.

Proof of Theorem 2. 3 Since $\bigvee_{i=1}^{s} \frac{1}{K} \overline{K}_{m_i}$ is a complete (s+1)-partite graph with n-s vertices and $\overline{R}_{s,n} = \overline{K}_{s+1} (\bigvee_{i=1}^{s} \frac{1}{K} \overline{K}_{m_i})$, then by Lemma 2. 1, it is easy to see that $X(\overline{R}_{s,n}) = X(\overline{K}_{s+1} (\bigvee_{i=1}^{s} \frac{1}{K} \overline{K}_{m_i}) = X(\bigvee_{i=1}^{s} \frac{1}{K} \overline{K}_{m_i}) \ge X(T_{s+1,n-s}) = \frac{1}{2}s(2n-3s-1)$. So we get the result.

Proof of Theorem 2. 4 Because of the definition of \overline{R}_{n} and Theorem 2. 3 and $q \leq p+1$, we have

$$\begin{cases} 4 \leq s \leq \frac{n-1}{2}, \\ 6 \leq \frac{1}{2}s(2n-3s-1) \leq n+1. \end{cases}$$

It is easy to see that Theorem 2.4 holds.

References

 Bondy J A, Murty U S R. Graph theory with applications [M]. New York Macmillan Press, 1976.