Some New Nonhamilton Graphs
 一类新的非哈密顿图

TANG Gan－wu ${ }^{1}$ ，TANG Gao－hua ${ }^{2}$ ，W AN G Min ${ }^{3}$
唐千武 ${ }^{1}$ ，唐高华 ${ }^{2}$ ，王 敏 ${ }^{3}$

（1．Department of Mathematics and Computer Science，Guilin Normal College，Guilin，Guangxi， 541001，China；2．Department of M athematics and Computer Science，Guangxi Teachers Education University，Nanning，Guangxi，530023，China；3．Department of Mathematics and Information Science，Yantai University，Yantai，Shandong，264005，China．）
（1．桂林师范高等专科学校数学与计算机科学系，广西桂林 541001；2．广西师范学院数学与计算机科学系，广西南宁 530023；3．烟台大学数学与信息科学系，山东烟台 264005 ）

Abstract

A class of famous no nhamilton－g raphs $K_{m} \vee\left(\bar{K}_{m}+K_{n-2 m}\right)\left(\ldots m \leqslant \frac{n}{2}\right)$ have been extened to $K_{s} V\left(\sum_{i=1}^{s+1} K_{m_{i}}\right)\left(\sum_{i=1}^{s+1} m_{i}=n-s, \not 2, \leqslant \leqslant \frac{n-1}{2}\right)$ and their simple properties are discussed．

Key words nonhamilto n －graphs，$C_{n, m-g r a p h s, ~}^{R s, n-\mathrm{g} \text { raph }}$
摘要：把非哈密顿图 $K_{m} \vee\left(\bar{K}_{m}+K_{n-2 m}\right)\left(\mathbb{K}_{m} \leqslant \frac{n}{2}\right)$ 扩充为 $\left.K_{s} \vee \sum_{i=1}^{*} K_{m_{i}}\right)\left(\sum_{i=1}^{n} m_{i}^{1}=n-s, n \geqslant 3, \leqslant \leqslant \frac{n-1}{2}\right)$ ，并讨论此类图的简单性质．
关键词：非哈密顿图 $C_{n, m}$ 图 $R_{s, n}$ ，图
中图法分类号：O 157．5 文献标识码：A 文章编号：1005－9164（2009）01－0007－02

Bondy．J．A and Murty．U．S．R ${ }^{[1]}$ have defined a class of graphs $K_{m} V\left(\bar{K}_{m}+K_{n-2 n}\right)$ which is denoted by $C_{n, m}\left(\hbar \Vdash_{\mathbb{E}} \frac{n}{2}\right)$ ，and have proved that the $C_{n, m}$ is a class of nonhamilton graphs．In this paper，we denote $\left.K_{s} V \sum_{i=1}^{s+1} K_{m_{i}}\right)$ graph as $R s, n$ and if m_{1}, m_{2}, \cdots ， m_{s+1} are given we denote as $R_{s, n\left(m_{1}, m_{2}, \cdots, m_{s+1}\right)}$ ，where $\sum_{i=1}^{s+1} m_{i}=n-s, n 3, \leqslant \frac{n-1}{2}$ ．

1 Preliminaries

Suppose G is a sim ple undirected graphs，$V(G)$

收稿日期：2008－05－05

作者简介：唐干武（1962－），男，副教授，主要从事图论及概率统计研究工作。
＊Supported by the Foundation of Guangxi Natural Sciences（ 0221029） and the Foundation of Guangxi Educational Department （200807MS032）．
and $E(G)$ denote vertex set and edge set in graph G respectively．We say G is a $(p, p-k)$－graph if $|E(G)|=|V(G)|-k$ ，where k is integer．A $m-$ partite graph is that whose vertex set can be partitioned into m subsets and no edge has both ends in any one subset．A simple graph is said to be a complete m－partite graph if it satisfies that each vertex is joined to every vertex that is not in the same subset．The number of edges in g raph G is denoted by $\mathrm{X}(G)$ ，i．e．， $\mathrm{X}^{\prime}(G)=|E(G)|$ ．Let $\mathrm{k}(G)$ denote the number of components in graph G, \bar{G} denote the complement of graph G, K_{n} denote the complete graph with n vertices．The union of G, G_{2}, \cdots, G_{k} ，is denoted by $G \bigcup G J \cdots \cup G_{k}$ and when G, G_{2}, \cdots, G_{k} are pairwise disjoint，$G \cup G \bigcup \cdots \cup G_{k}$ is denoted by $G+G 2+\cdots+G$ or $\sum_{i=1}^{k} G$ ．We say the graph is the join of pairwise disjoint g raphs $G_{1}, G_{2}, \cdots, G_{k}$ ，which
is obtained by joining each vertex of G to every vertex of $G 1+G 2+\cdots+G-1+G+\cdots+G$ for any i $\in\{1,2, \cdots, k\}$ in $G^{1}+G_{2}+\cdots+G$, and denote as G^{1} $\vee G_{2} \bigvee \ldots \bigvee G_{k}$. A Hamilton cycle of g raph G is a cycle that contains ev ery vertex of graph G. A graph is a Hamilton graph if it contains a Hamilton cycle A graph is a nonhamilton graph if it doesn t contain any Hamilton cycle. Other notations and terminologies not defined here can be found in reference[1].

Lemma 1. $1^{[1]} \quad$ Suppose G is a Hamilton graph, then $\mathrm{k}(G-D) \leqslant|D|$ for every nonempty proper subset D of $V(G)$.

2 Main results

In the following, we prove that $R_{s, n}-g$ raphs are nonhamilton g raphs and discuss its some properties . Furthermore, $R_{R, n}$ is a bigger class than $C_{r, m}$.

Lemma 2. 1 Let G be a complete m-partite graph with n vertices. We deonte the complete $m-$ partite graph with n vertices as $T_{m, n}$ which satisfies that the number of vertices of a part is more than one, and the rest is only one. Then we get $X(G) \geqslant$ $\mathrm{X}\left(T_{m, n}\right)$, with equality only if G is isomorphic to $T_{m, n}$.

Proof Suppose G is a complete m-partite graph with n vertices, and the numbers of vertices of each parts are $n_{1}, n_{2}, \cdots, n_{n}$ respectively. Without loss of generality, suppose $n \leqslant n_{2} \leqslant \cdots \leqslant n_{n}$, if G isn \uparrow isomorphic to $T_{m, n}$, then there exists $i \in\{1,2, \cdots$, $m-1\}$ such that $n>1$. Let's consider complete $m-$ partite graph with n vertices G which the numbers of vertices of each parts are $n_{1}, n_{2}, \cdots, n_{i}-1, \cdots, n_{n}+1$, respectiv ely, then

$$
X\left(G_{1}\right)=\frac{1}{2} \sum_{k=1, k \neq i}^{m-1}\left(n-n_{k}\right) n_{i+} \frac{1}{2}\left(n-n_{i+1} 1\right)\left(n_{i}-\right.
$$

$$
\text { 1) }+\frac{1}{2}\left(n-n_{n}-1\right)\left(n_{n}+1\right)=\frac{1}{2} \sum_{k=1}^{m}\left(n-n_{k}\right) n_{k}-
$$ $\left(n_{n}-n^{2}+1\right)<X(G)=\frac{1}{2} \sum_{k=1}^{m}\left(n-n_{k}\right) n k$.

If G is isomporphic to $T_{m, n}$, then Lem ma 2. 1 holds. Otherwise, we continue above process until n_{j} $=1$ for any $\mathcal{E}\{1,2, \cdots, m-1\}$, then we obtain the graph is $T_{m, n}$. Noting that the edges of graph which we obtain by above process is reducing gradually to ε
($T_{m, n}$). So we complete the proof of Lemma 2. 1.
Theorem 2. $1 C_{n, m}$ is a subset of $R s, m$.
Theorem 2. $2 R_{R, m}$ is a class of no nhamilton graphs.

Theorem 2. 3 The inequality $X \bar{R}_{s, n} \geqslant \frac{1}{2} s(2 n$ - $3 s-1$) is true

Theorem 2. 4 Let $\bar{R}_{s, n}$ be a (p, q) graph, where q is less than or equal to $p^{+} 1$, then s is less than or equal to 4 . Further, when s is unequal to 1 , then n is bigger than or equal to 5 and is less than or equal to 9 .

Proof of Theorem 2.1 Because of the denotations of $C_{n, m}$ and $R_{s, n}$, therefore $C_{n, m}$ is a special case of $R_{s, n}$, i. e. $C_{n, m}=R_{n, n(1,1, \cdots, 1, n-2 n)}=K_{m} V$ $\left(\sum_{i=1}^{m} K_{1}+K_{n-2 m}\right)$. So $C_{n, m}$ is a subset of $R_{s, n}$. We complete the proof of Theorem 2.1.

Proof of Theorem 2. 2 We denote the subset K_{s} which contains svertices of $V\left(R_{s, n}\right)$ as D, then we have $\mathrm{k}\left(R_{s, n}-D\right)=s+1>|D|$. By Lemma 1. 1, $R_{s, n}$ is a nonhmailton graph. So we complete the proof of Theorem 2. 2

Proof of Theorem 2. 3 Since $\bigvee_{i=1}^{\stackrel{1}{1}} \bar{K}_{m_{i}}$ is a complete ($s+1$) partite graph with $n-s$ vertices and $\bar{R}_{s, n}=\bar{K}_{s}+\left(\bigvee_{i=1}^{4 /} \bar{K}_{m_{i}}\right)$, then by Lemma 2. 1, it is easy to see that $\mathrm{X}\left(\bar{R}_{s, n}\right)=\mathrm{X}\left(\bar{K}_{s}+\left(\bigvee_{i=1}^{\stackrel{1}{1}} \bar{K}_{m_{i}}\right)=\mathrm{X}\left(\bigvee_{i=1}^{s+1} \bar{K}_{m_{i}}\right) \geqslant\right.$ $\mathrm{X}\left(T_{s *}, n-s\right)=\frac{1}{2} s(2 n-3 s-1)$. So we get the result.

Proof of Theorem 2.4 Because of the definition of $\bar{R}_{\mathrm{s}, n}$ and Theorem 2.3 and $\mathbb{\sigma} p+1$, we have

$$
\left\{\begin{array}{l}
\leqslant \frac{n-1}{2}, \\
\propto \frac{1}{2} s(2 n-3 s-1) \leqslant n+1 .
\end{array}\right.
$$

It is easy to see that Theorem 2.4 holds.

References

[1] Bondy J A, Murty U S R. Graph theory with applications [M]. New York Macmillan Press, 1976.

