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Abstract: A necessary and sufficient condition for the oscillation of solutions of a class of second
order nonlinear delay differential equations with impulses is obtained by using the contraction
mapping principle and some differential inequalities.

Key words :differential equation,impulse ,oscillation

T PR e R PR A A KL A8 B — 2 TR AR R PR BK v B T R IR SIS R E KM

KER MR Kk fksh
FEZESHEES.0175.1 XEkFRIRE A

Many systems in physics,chemistry, biology and

information  science have impulsive dynamical

behaviors due to abrupt jumps at certain instants
These

dynamical behaviors can be modeled by impulsive

during the dynamical processes. complex
differential equations. The mathematical theory of
impulsive differential equations has been developed by
a large number of mathematicians''’. Gopalsamy and
Zhang™ first investigated the properties of linear
impulsive differential equations with a single delay. As
we know ,in spite of the large number of investigations
of impulsive differential equations, the systematic

theory of impulsive delay differential equations has not
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been established since the combined effects of time
delay and discontinuity on the solutions are not easy to
deal with. In recent years, some authors concentrated

on the oscillation of this class of equations. Most of the

obtained results are concerned with first order
equations™ '), while only a few are about second order
equations™'' ', Reference [14] studied the oscillation

for linear equation:
JI”(t) +r@®)x @) + [p) — q@®) ]zt —
) = 05 > 0,¢ #tksk = 1424,
lx(t;) = g (x (@), 2’ @&F) = h(Z D)),

(0.1)
and obtained the sufficient conditions of oscillation by
using  differential  inequalities. Reference [15]

researched the following linear equation ;
@) + E;":]q,x' (t — o) + Z:‘:lp,x’ t —
Ty) = Dist == 058 £ Ligk = 1 32 sovey
x(@t) —x@) = b (@), 2’ ¢F) — 2 @) =
b’ (),

(0.2)
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and got some necessary and sufficient conditions of
non-oscillation of solutions based on the roots of the
characteristic equation.
In this paper,we consider a class of second order
nonlinear delay differential equations with impulses:
[pDO2' @] + g f(xt — 1)) =0,
sk = 142,50,
@) — x(t) = Bux(ty) a2’ (tF) —
2 ) = G )
where f(z) € C'(— o0, 4 00),p) € C'[0, + o),
q(t) € C[0, + o0);7,B, and C, are constants, #, is a

(0. 3>

given sequence. Our purpose is to find the necessary
and sufficient conditions for oscillation of Equation
(0. 3

1 Definitions and lemmas

Consider the impulsive delay differential equation :
[p@)x' @) +q®f(x@ — ) =0,
t¢tmk = 1425,
: 7 (1. D
110;) — x(t) = B (),

.T/ (f/:r) == .T/(tk) = (jkf/(tk)s

wherez > 0,0 <t; <t, <+ <t, <+ and limt‘, —
oo,
() = lim TUT T2 iy
h—0"
lim x(ty + h) — x@&f) (1. 2)

h

Now we give the following preliminary notes,

h0"

definitions and lemmas for further use.

PC, = {zx: [0 — t,0] = R|x(t) is twice
continuously differentiable for t € [6 — 7,0 \{t,,k =
1,2, 52 )y (@ )2 (88),2" (¢)  exist  and
2(ty) = x(t) 2’ @y ) = 2 () fort, € [0 — r,0]}.

0, = {x:[0c — t,0] = R|x(t) is continuous first
for ¢t # ty3x2 (2 )y (ty ) exist and 2 (¢, ) = () 50 (L)
is continuously differentiable for ¢ = o,t # t,,t & t, +
T @) 2 () 2’ i + )2’ (4 + ) exist and
#itr) =& )y,

Definition 1.1 For any ¢ = 0and ¢ € PC,, a
function x: [0 — 7, 4+ ©0) —> R s called a solution of
Equation (1. 1) satisfying the initial value condition

x(t) = ¢@), € [0 — r,0], (1.3
if x € ), and satisfies Equation (1.1) and (1. 2).

In this paper, we only consider the nontrivial
Ty 1 00).
% 16 £% 3 4

solutions of Equation (1.1) in [¢, —

;- EAE 2009 F 8 A

Definition 1. 2 A solution of Equation (1. 1) is
called oscillatory if it is neither eventually positive nor
eventually negative. Otherwise, it is called non-
oscillatory.

Definition 1.3 Equation (1. 1) is called
oscillatory if all of its solutions are oscillatory.
Otherwise,it is called non-oscillatory.

Assume that(A,) m € PC'[R,,
R] and m(¢) is left-continuous at ;.2 = 1,2,++=; (A,)
For k= 1,2, st Z=tyem' (&) < p@d)me) +q(t) st F#£
te,m(ti) < dwm(t,) + b, whereqg,p € PC'[R,,R],
d, = 0 and b, are constants. PC[ R. , R] denote the

Lemma 1. 1t

class of piecewise continuous functions from R, to R ,
with discontinuities of the first kind only att = #,,k =
1,2,++- . Then

m@) < m@) ], _, _dexp j p(Hds)  +

Z/“<z‘;<1( sz<17<zd-feXp(J/ P(S)d?) b +

J’ Z ,[dkexp(J‘IP(O')dU)q(S)dS,t =t

¢ .\<1k<1
0

2 The main results

Consider the equation
[pOZ @] +q&)f(xt — 7)) =0,
b k= 1,2,,
(Y = 2Ch) = Buxlt) s
2ty — £ = Cu' ()

x(t)) = x(,,x’(tff) = Ilu-

2.1

We assume that the following conditions (H, ~ Hj)
hold.

H) p @) =0,p0) > 0,q() =0,

(Hy) 2f(2) > 0,2 # 0,/ (x) = 0,f(0) = 0,0
<<l <y,

(Hy) By & (— L;00:C & ¢(— 1y + &0),

Remark 2.1 In view of x(¢/) = (1 + B,) -

x (), Equation (2. 1) is oscillatory when B, <<— 1.

Lemma 2.1 Assume that conditions (H,~H;)
hold. Furthermore, suppose that x(z) is a solution of
Equation (2.1). Then there exists 7" == t, such that
x(t) > 0fort =T.

Proof We first prove that 2’ (¢,) = 0 for any ¢,
= T .1 it is not true, then there exists some j such
that 2’ (¢,) << 0O whent¢, =T + 7. Thus

Z()= QA + Bz ;) < 0. (2:2)
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Set S(2) = p()x' () and p(t] )’ (7)) =
PN f)=—A,A>0. ft € (;4,—1+t;4:] sthen
t —7>Tand (¢t — t) > 0. It follows from condition
(H,) that f(x(t — 7)) > 0and S’ () =— q@) f(x(¢
— 7)) << 0.S(#) decreases in the interval (Z;;, .,
i) o thenp(E)a (84) < pGEDZ G =— A<
05t a)x (i) < pUf)2" (1) = p) A +
Ciu)x' 1) <— (1 + Cj1 DA< 0.

Using the method of deduction,we obtain

S@) =pwx' O <— ] (1+CnA<o,

[(//

£E (Bjynstipnrils (2.3)
1<l‘<l(1+Ck) .

and then 2/ (z) <— A 0] Using
Lemma 1.1 and in view of x(z;7) = (1 + Bz () ,
we have x(t) < I’(tf)H'(I<[(l = By —

, Il .,.a+co
AJ/, ]7[""\’&‘1'(1 + B0 p(s) sy

)< [] Q4+ B @) —
I<l‘(’l

6 1 +G

AJ 11 1+BP()dc)t>t 2.0

]l < <s
It follows from Inequation (2. 3) that there exists T,
> 0 such that x(z) << 0forz>7in view of Inequation

i
(2. 2) andj H 1+Bk 205
it j<t,<s k :

ds > 0. This is a

contradiction.

Soz' (&) = 0forany & =T , Then 2" (¢ ) = (1
4 Gz &) and Syy) = Pl )z W) = 0.
Counting the fact that S(#) decreases in the interval
(tj4im19tj4:] swe have S(@) = p)x'(¢) = 0 ast €
(tistiyy 1oty = T, namely 2’/ (¢) = 0. Lemma 2. 1 is
then proved.

Remark 2. 2 If the solution x(¢) in Theorem
2.1 is eventually negative,then 2’ (#;) <C 0 and 2’ (¢)
< Ofort € (tystys, )]s wheret, =T.

Theorem 2.1 Assume that conditions (H,~H;)

hold. Further suppose that
T

| QA + Coglsds

t S e
0 1, <t,<s

= oo, (2.5

Then every solution of Equation (2. 1) is oscillatory.
Proof

(2.1) has a non-oscillatory solution x(2) .

If Theorem 2. 1 is not true,then Equation
We may
assume that x(t) > 0 for ¢t = T without loss of
generality. It follows from Lemma 2. 1 that I(tZ =0
and x(t) = 0 fort € (¢;st,4,] swheret, =T .
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p@)x' ()

w(t) = Flzlt — 1)) (2.6)
Then w(z) = 0fort =T — . If there exists some ¢,
such that ¢, — 7 = ¢;4), then 2t/ — ) = (1 +

Bj)x(t — ) . Otherwise, x(tf — 1) = x(t — 7). So
(@t — )= 1+ Bjw)x (@ — 7). Then f(x(tF — 1))
= f((1 4+ Bjw)x(t — 1)) in view of /' (x) > 0. Due
f(x)
e

o< e < d and f((1 + Bjw)xt)) =

eCl Bj(k))"
d

obtain w(tf) =

fx@)) , we
(1 +Coa" (&)
flx@ — o)) = fQQ + Biw)x(t, — 1)) i

d(l +Ck) P(tﬁ)r,(tk)
C(l + B]([,))” f( -r(tlz e 'Z') )’

w'(t) = [—g@) et — o) — @' &) (x(e
— N E—)]/[Lrlx@—))]<—q@) st Ftyst =

P& (&)

AR e (2 T
It follows from Lemma 1.1 that
B d (1l - Cy)
w(t) < JO AL AT-B.) B,(;u)"q( s)ds. (2.8)
d¢l + Cp)

It is seen that

0 F B9 = A+ Cgls) since
Jjk)

Bj(le) 6 (_ lvo)sn > 2and Ck 6 (_ ].7 + OO) . If
Equation (2.5) holds, let ¢ =+ co in Inequation

(2.8), then lmw() =— oo. This is a

t—+=—+oco
contradiction. Then the proof is complete.

Now we seek the necessary and sufficient
conditions of oscillation for Equation (2. 1). The
conditions (H, ~H;) are replaced by the conditions

(H; ~H; ) respectively as follows:

H 1) = 0,5 <a< p) <b<1,
q(t) =0

(H; )zf () > 052 750y 1 a) =0,€0) = 0,0
<e<?@«q,

CHL 3B, = €5 & (— 1,00

Lemma 2.2 Assume that conditions (H; ~H; )
hold and that for some m > 1,

= JI a+Bri<1e—

t—mr< lk <t

mr >15 (2.9)

Then Equation (2. 1) is oscillatory if and only if the
equation without impulses

[y D] + QW f(ytt—1) =0 (2.1")
is oscillatory , where Q(z) = 5 H 1+ B) g .

17r<1b<1
Proof To prove Lemma 2. 2, we introduce the

Guangxi Sciences, Vol. 16 No. 3,August 2009



following delay differential inequalities with and
without impulses(denoting by star) respectively.
[P D] + g f(xt — 1)) < 0.t F# 1y,

B = 1929"'9
(@) — x(t) = Bux (@), 2’ @) — 2 (1) =
C;Z.Z"(lk).

(2.10)
2@y D] + QW) f(y(t — 1)) < 0;(2.10%)
[p@Wx @] + q@)f(xt — 1)) = 0,2 F£ 44

k= |, 52 sssg
() — x() = Bux () ,2' () — 2 (t) =
C&I’(tk).

(2. 11D

[p(Oy O] + QW f(yt — 1)) =0.

(2-11%)
We claim that: (i) Inequation (2. 10) has no
eventually positive solution if and only if the
corresponding Inequation (2.10") has no eventually
positive solution. (ii) Inequation (2.11) has no
eventually positive solution if and only if the
corresponding Inequation (2.11°) has no eventually
positive solution.

We first prove (i). Let x(#) be an eventually
positive solution of Inequation (2. 10). Then there
exists 7' = 0 such that x(¢) > 0 and (¢ — 7) > 0 for
t = T . From condition (H,), f(x(t — 7)) > 0 and
gz — 7)) = 0fore =T,

Set &) = =[] (1 + B)7'z(). Hence

17mr</k<:

y() > 0and y(t — ) > 0fort =T . It follows from
Inequation (2. 9) that y(z) <<x(¢). Then f(y(t — 1))
< f(x(t — 7)) in view of /' (x) = 0. From condition
(H; ). B, € (— 1,0) implies that [ (1 + B!

—mr<<t, <t

= H (1 + B,) '.Then fort % t,, we have

1—t<< ’k<l

(DY D] + QW fyt — 1)) =

5 I a+Bo'lror®) +
5 1 a+Boawfye—o) <

—r<< I“';I

5 1 a+Bhosor+5 [ a+

Ifmr'élk<l /—mrgl‘,<1

Bo g f(yt—n =5 [ a+Bo-

t—mr<t, <t

([p@)L @)] + q@)flxt = ).
JEAE 2009 F 8 A %16 A% 3 M

Taking account of that x(#) is a solution of Inequation
(2.10) ,then
[y D] + QWS (¥ — 1)) <0t F# .

(2.12)
Fort, =T ,we have
ya) =5 [ Q+Byz@) =
l—mz'<1]<l‘,+
5 I a+B)7a+ Bz =
lfmrgljgl,e
5 I a+ By z@) = ya,
l—mr§1]<fk
ya) = 5 I a4 + B lx@) =

I*nﬂ‘§11<lk

5 1 a+Byze) = yaw.

Ifmr</]<1k
It follows from the above that y(z) is continuous on
[T, 4+ o) and is an eventually positive solution of
Inequation (2. 10" ). Conversely, let y(z) be an
eventually positive solution of Inequation (2.10") and
y(@) >0,y —17) >0fort =T ,then [p()y @) ]
=— Q) f(y(— 1)) < 0. From condition(H,), 0 <
- fx

n

< d ,it implies that

<2
[pwy T + 5 ] Q-+ Bo gy —

17r<1‘<l
7) K 0 (2:13)

Set x(t) = [ (1 +B)y(@). Fort#u it follows

<, <t
c

fromthefact0<7<1,n>3and0<1+Bk<1

that

! ! c
[p2 O] +qfaG—N<5 [ a+

T<t,<t

BO[pOy W] +qw) d-x"¢— =5[] A+

71‘£1k<:
BOopwy ] + qw - d - ¢ [ a +
T<t,<t—rt
Byyt — o < 5 [ a4+ Bolpwy ®] +
T <t
g ede [[ A+ Boye—o =
'I'<Ik<lfr

2
7 Il a+ByCpwy @Y +5 T a+

T<t,<t =<, <t
B g@)y (¢ — 7).
From Inequation (2. 13) we have
oz’ )] + q)f(xt — 1)) < 0,2 F# 4.
(2.14)
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On the other hand,for any ¢, =T,
zeH =5 [ a+syyeHr=5 1] a+

T<11<1;L T<t;<ty

Bpywo =5 [ A+ Bpy@dQ+ By =+

T<1,<1k
Box(t).
Similarly, it is easy to calculate that 2’ (z) = (1 +

B,)x' (¢;) by using Equation (1. 2). Hence we can see

that x(z) = 5 H (1 + Boy() is an eventually

<, <t
positive solution of Equation (2. 10). (i) is then
proved. The proof of (ii) is similar to that of (i). The
proof of Lemma 2. 2 is then completed.
Lemma 2.3 Assume that conditions (H; ~H; )

hold , then Equation (2.1") is oscillatory if and only if

f’}Qu)dt - (2.15)

where ¢ is a small positive number.

Proof To prove the sufficiency, without loss of
generality we may assume that y(z) is a eventually
positive solution of Equation (2.1"),then there exists
aT > 0 such that y(z) > 0 and y(t — 7) > 0 for¢ >
T . Since Q(z) = 0and f(y( — 7)) > 0,Equation (2.
1*) implies that p(2)y' (¢) = 0 and p(2)y' (¢) is non-
increasing. Let lim y'(z) = /. Suppose that / < 0,

t— 4 ox

then lim y(¢#) =— oo. This is contradict to y(¢) is a
t——+o0

eventually positive solution of Equation (2. 17). So
F ) = 0,9 —17) = 0for£>T,

pDy @ |
FoG—0° (t = T). Notice that

p@) > 0 and f(y(t — ) > 0),w() > 0. From
Equation (2. 1*), we have [p(t)2’ ()] < 0 and
Py () < p(t — )y (¢ — ) . Therefore,

@)y ()

Set w(t) =

W =za—oy T
— QW Ayt — 1) — pWY W) f (y — )y (¢t —
Pyt — o))
and
) - Py @)
Wil - W = Jly@Gt— 1))
tp)y WD)yt — 1))y (t — ) Py (t)
iyt — 1)) = fly—1o) T
plt — Dy (&t —7) by (t — 1)
fGya@—1) T fly@¢t—1))°
namely ,
; by' (t — 1)
w' (¢) +tQ(t)<f——(y(t_r)). (2.16)
. _f@ 1 1 1
Since 0 < ¢ K p < d'dy" = i) < - and

250

+ox 1
0< [ 2hsds < oo, 2.17)

T f(y)
Now integrate Inequation (2. 16) from 7T to ¢,

; . t by' (s — )
w(t) + L.sQ(s)dsgw('I ) + J'r Fents — o5
y 1

— w(T) + 8] el sd (s — 1) = () +

oo du s du
bJ‘_v(T—r) f(l() o bJ.v(lfr) f(u)'

In view of w(#) > 0 and Inequation (2. 17),we obtain

ds

t = + oo du
J sQ(s)ds < w(T) + bJ 3 = M,.
T y(T—1) S )
(2. 18)
Letting # = 0 in Ing. (2. 18),we have J"JrsQ(s)ds <

M, .1t follows from q(¢) € C[0, 4+ o©) and q(z) =0
T e
that J sQ(s)ds <+ oo . Soj sQ(s)ds <<+ oo . This

contradicts to Equation (2. 15). Then we proves the
sufficiency part in Lemma 2. 3.

Next,we use the contraction mapping principle to
prove the necessity by contradiction. Now assume that

Equation (2. 15) fails. Let {2 be the space of solutions

of Equation (2.1") and setY = {y|y € .Q,Zibgy(t)

< %b}. Define an operator F':Y — Y by

2a

Fy@ = 5=+ L[ v s — [ -

P " pOY,
DR f(y(s — t))ds]. (2.19)
Set L, = sup  f"(y). Choose ¢, large enough so

1
2b 2a—b

that Lf " s 55 W

0

Equation (2. 15) fails,then from Equation (2.19) we

by taking account of

have

-
Fyle) == ﬁ - p(lT>J (s — Q) f(y(s —

1 L e 1
T))ds 2 Z = mj[ SQ(S)dS > [—) =

1. x a(2a—b) 1
a(2a — b) 2b 26

and

Fy(t) < + . Jl y()p ()ds < —— +

S 1
ORI @
l; b— a 1

P(t) _ P([u) 1 3
p@) 2a—b<a+ a 2a — b
1

2a — b’
From the above result, F(Y) € Y. On the other
hand,for any y,(¢),y,(¢) € Y,

1
p )

o) = Fyo@ | < 5=l — mll| #/ s+

Guangxi Sciences, Vol. 16 No. 3,August 2009



+ W — pty)

Lily, — yzllj sQ(s)ds = %Ilyl — »ll +
o b—a
Ly — »l| @wds < 29y — sl +
=k b= )

22y — 3l < CE+ BBy — 3l <
b
2ally — 2l

From condition (H{ ),we have 0 << % <1, and then

F is a contraction map. It follows from the contraction
mapping principle that F has a fixed point in Y since
F(Y) C Y. So there exists y(¢z) € Y such that
-1 . 1 ' _ r" _
y(@) = 2 + P(t)[JI”y(s)p (s)ds ( (s
DR f(y(s — ))ds]. (2.20)
From Equation (2. 20), we havep(®)y(@) = 1 +
JI y(s)p' (s)ds — J

+oc

s — DRAGYf(y(s — 1))ds,

/.

+ o0

p ey -+ p@y @) = ylo)p' ) — J —

+oo
QG f(y(s — s, p(1)y (2) = J Q) f(y(s —
H)ds, [p@Wy @] = — QWSf(yt¢t — ),
LpWy ] + QW f(ykt — ) =0.
Hence Equation (2. 1") has a solution y(#) € Y

_ 1 _ 1
= by € 8, 5 2a — b
contradiction to that Equation (2.1") is oscillatory. So

< y@) < }. This is a

Equation (2. 15) holds and the necessity is proved.
The proof of Lemma 2. 3 is completed.

We obtain from lemma 2. 2 and lemma 2. 3 the
following theorem.

Theorem 2. 2 Assume that conditions (H; ~
H; ) and (2. 9) hold. Then Equation (2. 1) is

oscillatory if and only if

4oo .
j 5 1l a+Bo tgydt =+ oo.

I*rglk<l

(2. 21)
3 Example

To illustrate our results,we consider the example:
3 3 / /
[( z -+ 57[arctan(t))ar @7 +

lzf(-r(t — 1) = Ostikak = 1524+%*3

Y — ) =— %I(k),x’ (E) — 2/ (k) =
- %l‘l(k) 91(O+) = I(>91,(0+) = fl()’
(3.1
F@AE 2000 % 8 A F 16 KF 3 M

where

xlexp(sin(In|x|)),x # 0,
Jla) =
* 0,xr = 0.

In Equation (3.1), p(t) = (% + S%rarctan(t)),

gt) = 3By = €y =— -;—T = 1,t, = k. We can

calculate that p' () = 0 and % < p(1) < 1—90 fort=0,

xf(x) > 0 and f'(x) = z’exp(sin(n|x|))(3 +
cos(In|x|)) > 0 for x 7% 0,1 (0) = 0,exp(— 1) <
flz)

1,3
oo, 4+ o0). So conditions (H; ~ H; ) hold. Hence

conditions (2.9) and (2. 21) are valid in view of
% H (l—l—Bk)”l:M H (] ~—

<exp(1). We can also prove that f(x) € C'(—

17r<1k<1 eXp(]‘) —1<k <t

Lyre 2
5 g —T 2 1

g ) o .

L = I<[ (1 + By lzqo)dt:L 37]"[ a

Ifr\lk<l t—1<k<t

—l>*qu<z>dt>f E__ds =} o

2 = Je exp(2) ’

From Theorem 2. 2,we conclude that Equation (3. 1)

is oscillatory.
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