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Existence of Periodic Solutions for a Kind of Neutral
Nonlinear Differential with Infinity Delay
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Abstract The existence and uniqueness of periodic solutions of a kind of nonlinear neutral
differential equation with infinity delay is shown by using fixed point principle. In particular, the
requirement of Lipschitz condition on the nonlinear function f is essentially dropped, which allows
the equation to include a variety of nonlinearities. Meanw hile, an examples are given to illustrate the
main results.
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Theory of functional differential equations with
delay has undergone a rapid development in the

-3
73 More recently researchers

previous fifty years
have given spedal attentions to the study of equations
in which the delay argument occurs in the derivative of
the state variable as well as in the independent
variable, so—called neutral differential equations In
particular, qualitative analysis such as periodicity and
stability of solutions of neutral differential equations
has been studied extensively by many authors © .
Neutral differential equations have many applications.

For example, these equations arise in the study of two
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or more simple oscillatory systems with some

interconnections between them'"”', and in modeling
physical problems such as vibration of masses attached
to an elastic bar. On the one hand, note that the
following assumptions

(H) The nonlinear function f* is Lipschitz with
Lipschitz constant L ,i.e. ,

Lfhy = £, DI L h= 0l for all b, JE R;

(H) There exist two non-negative constants p
and g such that

L fF(I<< plH 4+ g, foral b€ R,
have been considered as fundamental conditions for the
considered existence of periodic solutions of systems in
the literature mentioned above. On the other hand,
there are many bounded monotonemnondecreasing
function which satisfy nether condition ( H) nor
condition ( Hr)

networks systems In fact, reference [10, 11] describe

in differential systems, such as

several such functions that are not satisfy Lipschitzian.
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Thus, it is necessary to drop conditions ( Ho) and ( Hi)
when one considers periodic solutions of different
sy stems.

This paper is largely motivated by the fact
mentioned above and reference [6, 7, 12]. Consider the

following nonlinear sy stent

Edt(x(t) - ; b(t,s)x(s)ds) = — a(t)x(¢) +
J[_:ﬁC(l‘,S,x(S))ds+ f(t,x)+ h(t), (1)
where a(t) and 4(¢f) are continuous real valued

functions. The functionsb: R< R> R andC: R< RX

R—> R are continuous in ther respective arguments,
f: RX E—> R is continuous, where E is the space of
functions mapping from (- ©©, 0] into R. For every
t, the function < E is defined by x: 0)= x(e+ 0),
for0€ (= ©©,0]. By using the fixed point principle,
the periodic solutions of the scale system (1) without
assumptions ( Hb) and ( Hi) on the nonlinear function
f is studied. Some results of the existence and
uniqueness of periodic solutions of system are
obtained. In particular, the requirement of Lipschitz
condition is essentially dropped on the nonlinear
function f , which allows system (1) to include a
variety of nonlinearitiess One also must point out that
the idea of dropping the requirement of Lipschitz
condition on the nonlinear function f is stimulated by
the works of Feng ete'’!. Further study the vector
form of system (1) with nonlinear term /* without the
assumptions ( H) and (Hi) will be our next stage of

the research priorities.

1 Existence of periodic solutions

In system (1) ,one further assumes thata(f+ T)
= a(0).h(t+ T)= h(t),b(t+ T,s+ T)= bl(ts),
C(t+ T,s+ T, )= C(t,s,” ),f(t+ T,h= f(t,
by, xi(s) = x(t+ s),s€ (- ©©,0],t€ R, and

r
J a(s)ds > 0. Assume that function C(¢,s,x (1))

0
satisfies the following hypothesis
(1) there is the continuous function M(t,s) such
that | C(¢,s,x ()<< | M(¢,5) | x(s)];
(ii) function M (¢,s) is M(t+ T,s+ T)= M(¢,
s) for all£,s€ R and t_‘ M(I,S)| ds is bounded, for
allt€ R.
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Assume thatJ __b(t,s) ds exists for all 1€ R

th roughout this paper-

Lemma 1 If the continuous function x(?) is
t

periodic in ¢ of period T, | C(t,s,x(¢))ds is a
continuous T—periodic function.

For T> 0, let Br be the set of all continuous
scalar functionsx (¢) , periodic in ¢ of period T . Then
(Br,ll" 1) is a Banach space with the supremum norm
llx!l = %uRp‘ x(t)l = gs[%lpﬂ‘ x(0)l.

To simplify notations, one introduces the
following notions. i
t

-1 —

Z= max| (1- eXp(—J’_ La(s)ds))” | a=

En%(iu]gﬂ a(t)l,

exp( - J a(s)ds), H= £rr[1(§§>r<]\ ht)l,

r= max
€ - T.T]
t

b= %uRJ_%b(t,s)ds,Mz ,sgukg[t_:JM(t,s)\ds. (2)

Theorem 1 Suppose that hypothesis (i), (ii), b
t_wb(t,s)ds <1, and (iii) 0 < f = £ U
f(t.x+ x ) - f(t.x )

llx I

= su
IS 0

< ©© hold. If there is a

positive constant J satisfying the inequality
b+ LT[abJ+ MJ+ fJ+ HE J,
system ( 1) has a solution in M , whereM = {l& Br
i< g} .
Proof First,one proves that if X (¢) € Br,x(1)
is a solution of Sﬁstem (1) if and only if

t_wb(faS)x(S)dv + (1 -
J’ a(s)ds))” " Jt_T[— a(s)Jiwb(S, fx (Hdf+

t-T t

x(t) = exp( —

Jt_mC(s,f,x(f))df+ f(s.xs) +  h(s)]exp( -

Jsa( fdf) ds. (3)
Rewrite system (1) into the following fornr

A -] box )= - a0 (x(0) -

t

J t_mb(t,s)x(s)ds) - a(t)J t_wb(t,s)x(s)ds+ J _CCC(t,

s,x(8))ds+ f(t,x:)+ h(t).
M ultiply both sides of system(1) with exp J Oa(s) ds)
and integrate from¢ - T tot to obtain

f_T[x(f) - Js_wb(s, Hx(Hdf] ds = J:_T[_

a(s)Jiwb(s, Hx(fdf+ J C(s, L,x(f))df+ f£(s,
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xs)+ h(s) I’ epr a( Hydf)ds.
As a result, one arrives at )
[x () - ’_mb(z,s)x(s)ds]epr [oa(s)ds) -
(- T) -J. b Tas)x(s)dsT
exp(J: "a(s)ds) = J - a(s)J.S_m
JS_LCC(s,f,x(f))dﬂ f(s.x)+ h(s)]

exp(Jla(f)df)ds
Dividing both

b(s, Hx (fdi+

sides of the above equation by

exp Oa(S)d?) and noting the fact that
x(t)= x(t- T)= x(t+ T),b(t- T,s— T)
= b(t,s),

one can deduce

[x (2) —J_wb(t,s)x(s)ds = [1-
eXp(JZiTa(S)ds)Tl[j_T(— a(sJ b(s, fx (Hdf+
JS_:A;C(s,f,x(f))dﬂ S(s,x0)+

his))exp “a D fds )
Define a mapping
Lx(1) = F(x(t)+ Glx(0)). (4
where i
F(x(2))= J _Dt/b(t,s)x(s)(ls, (5)
Gy = 11— epl atsw ] (-

a(s)fiwb(s, Hx (fdf+ JC(S fx(fydf+ £,
us) + h(s))exp(Jia(f)df)ds]. (6)

It is clear that L: Br—> B7 by the way it was
constructed.

Secondly, to show that G is continuous and the
image of G is contained in a compact set. Let b, je
Br. GivenX> 0, takeW= X/N with N= % T(ab+ M
+ J) ,where @,b,M and ' are given in Theorem 1.
Forllh— Il < W, one deduces

iGh- Gill= [1-

eXPJT a(s)ds) | I[;_T(|a(u)‘jljw\b(u,s)| :

I his) = I(s)| ds+ J\ M(u,s) | hs) = 1(s)l ds+

| fluhy = f (30 eprta(s)&)duK

Z&J:(Elﬂ M+ Plih= < ZT @b+ M+
366

FHlth= Il < X (7
This proves that Gis continuous. In order to show that
the image of Gis contained in a compact set, consider D
= (b€ Bz lINI<< R}, where R is a fixed positive
constant. Let B € D wheren is a positive integer.
Obviously, IGRIKS L ,where L is positive constant.
Next, we calculate (Gh)/(t) and show that Gh is

T

uniformly bounded. By making use o_fJ ,@(s)ds> Oand

periodicity of functionb, cand f , one obtains by taking
the derivative in formula(6) that

(W (1) = - a0 - at) b,
t_;,jc(f7S»h(S))ds+ fth)+ h(o).

(8)
Thus, the above expression yields I (Gh) < F, for

some positive constant F, which implies that the

s)B(s)ds+ J

sequence Gh is uniformly bounded and equi-
continuous. Hence by Ascoli-Arzela s theorem, G(D)
is com pact.

Thirdly, it is easy to show that F'is a contraction.
In fact, for any h,J€ Br ,one has

IF(h - F()lIl= supl F(hy - F()I<

b sup | h(r) = J(0)l<< Bith= ]Il

€700
Hence F' defines a contraction.

Finally, define M = {h€ Bz IIH< J)} .
above discussion, one knows that F Br —> Br.
Further, to show that b, 1€ M imp]ies”Gh+ Fll<
J. Leth € M , with [l HI, ||J.|.|< J ,then

IGht  FIIKS BllII+ :[|a(s)|b-||H|+
MIbl+ Fibl+ Hlds< Bllill+ Z T (@bl Hl+
MW+ 7K+ HY bJ+ ZrTlabJ+ MJ+ fJ+
HE J. (9)

[13]

From

Then all the conditions of Krasnoselskii s theorem
are satisfied. Thus there exists a fixed point z in M
such thatz= Fz+ G . Hence equation (1) has a T-
periodic solution.
Let M = (h& Bz IIHI< Jy.
Suppose all conditions of Theorem 1 hold. If

b+ ZTabJ+ aJ+ fJ]< 1

system ( 1) has a unique T —periodic solution in M.

Corollary 1

Proof Let the mapping £ be given by formula
(4~ (6). Forh J€ M ,onehas
IEh— LI (h+ ZT(ab+ M+ J))llh— 1l
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(10)
in view of formula (4)~ (6). This com pletes the proof

by invoking the contraction mapping principle.
Remark 1
the Lipschitz condition ( Hb). If f is Lipschitz function,

Indeed condition (iii) is weaker than

f can be replaced by the respective Lipschitz
constants. Therefore, condition (iii) includes the case
that f is Lipschitz function. Thus, this paper essentially
drop the requitement of Lipschitz condition on the
nonlinear function f in the above-mentioned literature,
which allows system (1) to include a varety of
nonlinearities, and improve and extend interrelated

results.
2 An example

Example 1 For small positive X and X , consider

the following equation

S0 - N e d) = -

cost)x (1) + )4_%ef(tﬂ)x(s)ds+
J _U;WS)ei (x(t— sin t) - s) dS+ st — 1’ (11)
whereb(t,5) = Xe& "™, C(t,s,x(s) )= Xe “Vx(s),
M(t,s)= Xe = = JJ‘Ws)ef (Flmsn =90 g pulse
functionwequals one if a pulse arrives at time? or zero,
if no pulse arrives, a(t)= 2+ cost,h(t)= sint- L

Obviously, function f does not satisfy the
conditions ( H) and ( H). Further, f= 1,H= 2, T
= X,a= 3,h= X, M= X,7= (1- ¢*) ', < 1
Leta constantJi= — 4%e" /[1- X+ ¢ (X+ 6Xcr
+ 2(1+ Xyr - 1)]. For smal X and X, there is
always a positive J== Ji such that

bJ+ L TladbJ+ MJ+ fJ+ HE J

hold. Hence, equation( 11) has a Z —periodic solution

by Theorem 1.
(1-e*)(1- X)
Zr(l+ 3X+ X)°
small X and X , choose positiveJ with J= J= Ji such
that

b+ LTI+ MJ+ fJ]< 1

hold. Hence, equation( 11) has an unique 2 —periodic

For

Choose a constantJ2=

IEAE 20005 11A % 16 55 437

solution by Corollary 1.
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