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Abstract ; Some new subclasses of analytic functions associated with a certain linear operator were

investigated. Some properties were proved such as subordination, superordination, integral-

preserving ,convolution ,inclusion relationships. Several sandwich-type results were also derived.
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Let A denote the class of functions of the form:

f) =z+ Da, 0.1)
k=2

which are analytic in the open unit disk
U:= {z:2 € Cand |z| <1}.
Let H(U) be the linear space of all analytic functions in
U. For a positive integer number nand a € C, we let
Hla,n]: = {f € HU). f(z) = a + a,2" +
P I
Let P denote the class of functions of the form:

P =1+ D pd nEN),

k=1
which are analytic and convex in U and satisfy the

condition: R(p(z)) > 0 (z € U). Let f,g € A,
where f is given by form (0. 1) and g is defined by
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g ==2z+ Zb,z}’. Then the Hadamard product (or
k=2

convolution) f * g of the functions f and g is defined

by
(frg)(@) t=z2+ Djab = : (gx ().

k=2
For two functions f and g, analytic in U, we say that

the function f is subordinate to g in U, and write

f(2) gk (z€U),
if there is a Schwarz function @, which is analytic in U
with @(0) = 0and |w(z)| <1 (z € U), such that
f(2) = gl(w(2)) (z € U).
Indeed,it is known that

f(2) < gz)(z € U)=>f(0) = g(0) and f(U)
G £,
Furthermore, if the function g is univalent in U, then
we have the following equivalence:

f(2) < gz e U)sf(0) = g0) and f(U)
C gW).

For complex parameters

Q; € (@ (] - 1727"'9(1) and ﬂj (= C\Z(;

Guangxi Sciences, Vol. 17 No. 3, August 2010



(Z(; 2 = {09 - ].y - 21"'};j == 1929"'95)9
the generalized hypergeometric function F(e,--,

a,; 3 ,+,0,;2) is defined by the infinite series:
Z (al (a)
(B (B,

=NU({0}sN: ={1,

qu(al oo

’aq;B]9. S,Z)

E st Lpat By

n!

253~z € U),

where (u), is the Pochhammer symbol defined by
1(n=0),

plu+ 1) (g + n-1)
Corresponding to the function A(a;,---

z), defined by
YOI s

s P52).

hpidy & = (n € N).

9aq;ﬂ19"’9 53
yBisz) + = Zqu(alv"'oaﬂﬂn

(0. 2)
A linear operator is considered in reference[1~7]:

H(a;,- ’aq;ﬂ’". B A—> A,

defined by the following Hadamard product:

H(a;yya,;58,,,8)f(2) : = h(ay,-,q,
Bis=sB32) * f(2) (@=s5+ 1;9,s € Nosz € Ui f
€ A).

We note that the linear operator H (a;,**,a,;8,,
4B, includes various other linear operators which
were introduced and studied earlier in reference [ 8 ~
12].

Corresponding to the function h(a,,*,a,;83,,,
B.;2) defined by form (0. 2), we introduce a function
hiCay o+ ya,3 8, ,+++,B,32) given by

h(a. yoer s Bryere o By 2) % halayy e yays By s

B.;2) = ——= (A>0). 0. 3)
(1 2)

Analogous to the Dziok-Srivastava operator H (a, -+,
aqh@u"' 9aq;ﬂ19
-=+,3.) was definedas in references[ 13,14 ] as follows:

H;(a;, 7aq;ﬂl g PR ’ﬁs)f(z) = h,(a, 0 ’aﬁﬁl ’
«,B32) % f(2). (0. 4)
For convenience, we write

H{(a)) = = Hy(ay,e a0 aq;ﬂ1v"'9ﬂ,)
(G € {1+2,°,q}). (0.5)
According to the forms (0. 2), (0. 3) and (0. 4),we
can easily find that

,B,), a new linear operator H,(a,,"**

q,5 — - ('{)Iz-l(ﬂl)le—l'"(ﬂs)k—l
H{*(a) f(z) =z+ ; T
a (z€ U). (0. 6)

We note that H; '(¥ +1,151) (A>0;7>—1)
is the well-known Choi-Saigo-Srivastava
operatort* ™7,
It is readily verified from the definition (0. 4) that
z(H{ *(a; + D) (2) = o;H*(e)) f(2) —

JEAFE 2010588 £ 175%F3H

(a; — DH{*(e; + 1 f(2), 0.7
2(H{*(¢) ) () = AHY{ (a) f(2) — (A —
DH{ (@) f(2). 0. 8)

By using the subordination between analytic
functions and the operator HY ‘(a;), we introduce
subclasses of analytic functions. And in the present
paper, we aim at proving some subordination and
relationships,

superordination properties, inclusion

integral-preserving  properties and  convolution

properties associated with the operator H{’(«;).
Several sandwich-type results involving this operator

are also derived.
1 Definitions and preliminary results

A function f € A is said to be in
the class F{*(a;;0;¢) if it satisfies the following

Definition 1

subordination condition ;
- &) H{* (e —{z— Df(2) i aHi' (a;)f(z) <
(z€U;0 € Cip € P). ' a.n
Definition 2 A function f € A is said to be in
the class G{’(
subordination condition ;

Hi* () f(2)
>4

()
a;;0;4) if it satisfies the following

4

a1 — + 0

(z€ U;d € C;de P). (1.2
Lemma 1%  Let 6,7 € C. Suppose that ¢ is
convex and univalent in U with ¢(0) = 1 and R(8¢(z)
+ 7)) >0 (€ U). I pis analytic in U with p(0) =1,

then the following subordination:

p(z) + 5;(’;—(27 < @(2) (z € U) implies that

(=) < p(z) (z € U).
Lemma 2%

i
#(2)

Let the function {2 be analytic and
convex (univalent) in U with £2(0) = 1. Suppose also
that the function @ given by

0(2) = 1 42" + 12 + oo
is analytic in U. If

() + z@'c(z) < 2(z) (R > 0;§# 03z €

U, (1.3)
then

B(2) < x(2) = %z—%ﬁﬁ—lh(z)dt <Q(2) (z€
u,
and X is the best dominant of form(1. 3).

Lemma 3! Let F be analytic andconvex in U.

Iff.g € Aand fL,g < F,then?f+ (1 —Vg<F
o=r=>n.

Let Q denote the set of all functions f that are
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analytic and injective on U — E(f), where E(f) = (¢
€ U .limf(z) = oo}, and such that /' (¢) % 0 fore €

z—>¢€

U — E(N.

Lemma 4" Let g be convex univalent in U and
# € C. Further assume that R(x¥) > 0. If p(2) €
H[q(0),1] N Q, and p(2) + xzp' (2) is univalent in
U, then q(2) + #zq' () < p(2) + kzp' (2) implies ¢(2)
< p(2) and q is the best subdominant.

Lemma 52! Let ¢ be a convex univalent

function in U and let 0,7 € C with

Zq”(Z) N i
R + 7 ) > max{0, — R( 77)}.

If pis analytic in U and op(2) + 72p' (2) < 0q(2) +
72q¢' (2), then p(2) < ¢q(2),
dominant.

and ¢ is the best

Lemma 67 Let the function T be analytic in U

with
T(0) = 1and RCT()) > & (= € V),
Then,for any function ¥ analytic in U, (T % ¥) (U) is

contained in the convex hull of ¥(U).

2 Properties of the function class F;°(a;;6;

o))
Theorem 1 Let f € F{’(a;;0;¢) with R(%) >
0. Then
Hi"(q 42‘ DS Fj *%Jzt%_‘ﬂt)dt <¢)
(z € U). i (2:1)
Proof Let f € F{'(a;;6;¢) and suppose that
M2yt — H{ (a; + E + Df() (z € U). (2.2)

Then A is analytic in U . By virtue of forms (0.7),
(1.1) and (2. 2), we find that
Hi{*(a; + 1D f(2)

h(z)+§~zh'(z)=(1—5) . +
a; z
61‘13"(01]-)]((2)
2

< ¢(z) (z € U).

Thus, an application of Lemma 2 for n = 1 to form
(2. 3) yields the assertion (2.1) of Theorem 1.

In view of Theorem 1,we easily get the following

(2.3

inclusion relationship.

Corollary 1 Let R(%) > 0. Then
F{(a;38;9) C F'(a;;0;9).
Next, we prove another inclusion relationship for
the function class F{*(a;;0;¢) .
Theorem 2 Letd, >0, = 0. Then
F‘i"‘(“ﬁé\zﬁé) (- F‘,{'S(a’j;& ;9.
Proof  Suppose that f € F{*(a;;8,;$) . It
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follows that
1 —d,) HY{ (q -iz— Df(=) 14, Hi"(a;«)f(z) &
#(2) (z € U). (2.4)

)
' < 2L
Since 0 = 3

< 1 ,and the function ¢ is convex and

univalent in U, from forms(2.1),(2.4) and Lemma 3
we deduce that

H*(e; + 1) f(2) Hi*(e) f(2) _

(1— o) ! s :
5 Hi (e, Hy
S — oy (g + Df(=) + o, H (a;)f(Z)] i
2
a— 3—)H3 (e J;”f(z) < $=) (€D,

which 1mplies that f € F{*(a;;0,;$). The proof of
Theorem 2 is evidently completed.

Theorem 3 Let f € F{*(a;;6;$). If the integral
operator F' is defined by

Fey: =221 J 1f()dE (2 € Uso>—1),
(2.5)

then
G IS gy ey, (2.6)

Proof Let f € F{'(a;;0;9) . Suppose also that
_ H{'(q, + DF(2)

z
From form (2. 5) ,we deduce that

2(H{ (e; + DF) (=) + vH{*(a; + D F(2) =
(v + DH{ (o + 1D f(2). (2.8)
Combining forms(Z 1),(2.7) and (2. 8),we have

B ey = HUG@ D@

+ 1 z
$(z) (z € U). 2.9
Thus, by Lemma 2 and form (2. 9), we conclude that
the assertion (2. 6) of Theorem 3 holds true.
Theorem 4 Let f € F{*(a;;0;¢) and g € Awith

G(2):

(z € U). 2.7)

R(g(;)) > % Then (f % g)(2) € Fy*(a;;658).

Proof Let f € F{'(a;;0;$) and g € A with

R(g(_zz)) > % Suppose also that

K(z): = (1 —6) HY{" (a, ‘|: DS () i

aﬁi—(—‘%& 2 §(e) (e € I,

It follows form (2.10) that
(1 — &) H{(a; + 1) (f % g)(2)

>4
Hi*(a) (f * g)(2)

>4

(2.10)

+

5 (z)

= K(z) * (z € U).

(2.11)

Since the function ¢ is convex and univalent inU ,
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by means of forms(2.10),(2.11) and Lemma 6, we
conclude that

a—ao
Hi*(a) (f * g)(2)
P4

Hi*(q; + D (f * g)(2)
>4

+

) < ¢=) (z € U),

which implies that the assertion of Theorem 4 holds

(2-12)

true.

Theorem 5 Let f € F{*(a;;8;$) and F is defined
by form (2.5) with f € Aand v >— 1. Then F €
F{*(a;;0;39).

Proof Let f € F{*(;;0;4) and F is defined by
form (2. 5) with v >— 1. We easily find that

Fe) = "L e i fode = (fx m@),
where

By =YX & 40 4

2 I =
Moreover, forv >— 1, we have
h(z)) =R j;l j -dr) = (v +
1

l)LuR(1 )du>(v+l)J 1 du>
(z € U). (2. 13)

Combining form (2.13) and Theorem 4, we conclude

that F € F{*(a;;6;9) .

thus completed.
Theorem 6 Let f € F{’(q;;8;¢) and

The proof of Theorem 5 is

Sa(z) : =z 4 Djazt(z € Uym € N\{1}).
k=2

(2.14)
Then the function W,, defined by

W, (2) ¢ J S 22D (= € Usm € N\(1D)

belongs to the class F{*(a;;8;9).
Proof Let f € F{*(a;;0;$) and S,, be defined by
form (2.14). We readily get

W, () :st"‘f‘)dm Cf % 2,35 BEUsmE

N\{1}),

where

gn(2) =2+ Z%eA(zem.
k=2
Form € N\{1} ,we know from reference[ 20] that

m “l
) = R(1 + 22’7>>% z € ).
=2

R(gm(z)
<

(2. 15)
Combining form (2.15) and Theorem 4, we deduce
that W,, € F{*(a;;0;¢) . We thus complete the proof
of Theorem 6.
Theorem 7 Let f € F{"(«;;0;¢). Then

JEMAF 20104588 H£17EF3M

€. == (D1 (Ba—1(Bi—y
L+ 2 s e T D @

f(2) —28(”)]# 0 (z € U;0=0<2n). (2.16)
Proof Suppose that /' € F{*(e;;0;¢). We know
that form (2.1) holds, which can be rewritten as

follows :

Hi*(a; + 1) f(2)
Z

F (") (z€ U;0=0<2n).

€2:17)
Furthermore,from form (0. 6) we find that

Hi*(a; + Df(z) = (z +

(A)l,—1(ﬂ1)lz~1'"(ﬂ>)lz—1
2 Tohoola 1)k~—1"'(aq)k—12*) * f(z) (z €

U. (2.18)
Now the assertion (2.16) of Theorem 7 can be easily
derived from forms(2.17) and (2. 18).

oo

Theorem 8 Let ¢, be univalent in U and R(g) >
i

0. Suppose also that ¢, satisfies

29", (2)
ql 1 (=)
If / € A satisfies the following subordination

H{*(e; + 1D f(2) H{*(a)) f(2)

R + ¥ =5 s {0 —R(%)}. (2.19)

(11— ! + 0 . <
z z
q,(2) + gqu’(z). (2.20)
7
then
HY'e, —Z Df(=) < ¢,(2), and g, is the best
dominant.
Proof Let the function 4 be defined by form
(2.2). We know that form (2.3) holds true.

Combining forms(2. 3) and (2. 20) ,we find that

h(z) + gzh’(Z) < q (=) + gqu’(z). (2.21)

By Lemma 5 and form (2.21), we easily get the
assertion of Theorem 8.

If f'is subordinate to F , then F is superordinate to
f. We now derive the following superordination
result.

Theorem 9 Let ¢, be convex univalent inU,8 €

C with R(g) > 0. Also let

J

H{* (e, + 1) f(2)
-4

€ Hlg,(0,1] N Q,
and

a—-ao + 0

Hi'(q,+ Df(2) | Hy* (@) f(2)
2z P4

be univalent in U .

Hi* (e, + 1) f(2)

Z

If ¢, (2) + gzqz’(z) <(1—290)-
]
H{*(a) f(2)
b4

+ 0 , then ¢,(2) <
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H{(a; + D f(2)

, and g, is the best subordinant.

z
Proof Let the function 2 be defined by form
(2.2). Then
@@ + /@ < A — O[HP (e +
7

DFE Yz + 6 m(—“z’ﬂfl = h) + Law o,

An application of Lemma 4 yields the assertion of
Theorem 9.

Combining the above results of subordination and
superordination , we easily get the following “sandwich-
type result”,

Theorem 10 Let g; be convex univalent and let g,

be univalent inU,¢8 € C with R(-g) > 0. Suppose also

that g, satisfies

R+ 2 ‘*((z))) > max {0, — R( ’)}
If

o¢Hi"(“’l‘1)f(Z) € Hla(0.1] 1 Q.
and

a4 — & HY@ 1— Df =) SHK'S(a;)f(z)

is univalent in U, also
6@ + Swi@ < A — OLHP G +
7

Df(]/z + & M »

then

g:(2) < < @),

and g; and ¢, are the best subordinant and the best

q,(z) + %zq’-,, (=)

Hi* (e, + D f(2)
z

dominant , respectively.

3 Properties of the function class G5*(«;; 6

¢

In view of form (0. 8),and by similarly applying
the methods of proof of Theorems 1~10,respectively,
we easily get the following properties for the function
class G{”"(a;;0;¢). Here we choose some properties but
omit the details involved.

Corollary 2 Let f € G{*(«;;0;¢) with R(—i—) >

0. Then
BE@D 2 4o < s
0
(z e U).

Corollary 3 Letd, > 8, = 0. Then

Gi's(aj;az 39 C Gi“"(d;;& 3P).

Corollary 4 Let f € G{*(a;;0;9) . If the
192

integral operator F'is defined by form (2. 5) ,then
Hi"(a;)F(z) < $(2) (z € UD.
Corollary 5 Let f € G{*(q;;6;¢) and g € A
with REE) > L Then (f % £) () € Gr(a;30:9).

Corollary 6 Let f € G{'(a;;6;4) and F is
defined by form(2.5) with f € Aand v >— 1. Then
F € Gy’ (a;;0;9).

Corollary 7 Let f € G{*(a;;0;9) and

S.(2): =z+ Dlad (2 €Ujzm € N\{(1}).
k=2

Then the function W,, defined by

Wa = [ 2284 € Usm € N1,
0
belongs to the class G{*(a;;0;¢) .
Corollary 8 Let f € G{*(¢,;;0;¢) . Then

T+ 3] et Pe Bt o £
k=2

a’])k_l (a )Ie 1° (a )k 1

— 2] #0 (€ U;0=0<2mn).
Corollary 9 Let ¢; be univalent in U and R(—i—)

>0. Suppose also that g; satisfies

zq 5(2)
€2
Hfe A satlsfles the following subordination :

Hi*(a) f(2)
z

R(1 +

) > max{0, — R(—)}

o

qs(z) + %zqs’ (2), then < g5;(2), and g5

is the best dominant.

Corollary 10 Let gs be convex univalent inU ,

¢ € C with R(—i—) > 0. Also let

Hi* (e,
H@)® ¢ prga1n Q.

and

H{*(a) f(2)

4 — 5 ] 4 o Hit @) ()

2
be univalent in U . If
0@ + 2ag o) < (1 — o @D
s Hg (e f(2) .
z
then ¢;(2) < ﬂi{%&, and g; is the best
subordinant.

Corollary 11 Let g; be convex univalent and let

gs be univalentin U,8 € C with R(%) > 0. Suppose

also that g, satisfies
zq 8( ) A

)>max{0, = (F)}'
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If

0= 5”—%’[—(2—3 € H[g,(0),1]1 N Q,
and
5 o Hx"(a;)ﬂz) . aHzil(«:)f(z)

is univalent in U, also
G + 2 < A — &
H'/{::] (aj)f(z)
2z

Hi*(a) f(2)
__Z—_ +

S <Q3(z) +%zq,g(z)9

then
Q7(z) < <Q3(z)9

and ¢; and gg are the best subordinant and the best

H{* (a)) f(2)
$4

dominant ,respectively.
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