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Abstract: A boundary value problem for the beam equation «” () +g () F(z,u()) = 0,0 <t <
1. together with boundary conditions «(0) = «’(0) = «’(1) = 4”(0) = 0, is considered,where
F(t,u) may be singular at u = 0,g(z) may be singular at both ends7 = 0 ands = 1. By using a
Green function of third order two point boundary value problems and Krasnosel’skii fixed point
theorem, some sufficient conditions for the existence of at least one positive solution for the
boundary value problem are established. An example also is given to illustrate the main results.
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: s Krasnosel” skii R u (D) + gWOFu))
= 0,0 <<t<<1,u(0) = u'(0) =’ (1) = «"(0) =0 , F(t,u) u=0 ;
g() t=0 =1 . s
Krasnosel” skii
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Consider the fourth order differential equation

u? () +gOFGu@®) =0,0<<t<<1, (0.1)
together with boundary conditions
u(0) =4’ (0) = u'(1) =d"(0) =0, (0.2)

where F(t,u) € C([0,1] X (0, +22),[0, + o))
Oqg([) 6 C((Oal)a [09 +

may be singular at u =
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©0)) may be singular at both endst = 0andr = 1.

Equation(0. 1) is often referred as the beam e-
quation. It describes the deflection of a beam under a
certain force. The boundary conditions (0. 2) mean
that the beam is embedded at the endz =0 ,and free
at the endz = 1. Recently, the existence and multi-
plicity of positive solutions of equation(0. 1) in the
non-singular case has been extensively studied under
various boundary conditions'' ™%, Yao"! studied the
existence of multiple positive solutions for the
fourth order boundary value problem

uV () = fou() " (0)),0 <1< 1,

u(0) = u(l) =4"(0) =d"(1) =0,
under some semilinear condition. Ma'* studied posi-
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tive solutions for following boundary value problem

uP () = A fGau) u' (1)),

u(0) = u'(0) = u"(1) =" (1) =0,
under some superlinear semipositone conditions. For
some other results on boundary value problems of
the beam equation, we refer the reader to the litera-
tures[ 3~6].

However for singular fourth order boundary-
value problems, the research has proceeded very
slowly “~1°1, Ma and Tisdell ' studied the singular
sublinear fourth order boundary value problems

u () = pHut,0 <<t <1,

u(0) = u(l) =4/ (0) = ' (1) = 0.

2] obtained necessary and sufficient

Following, Cui
conditions for the existence of position solutions of
above problem under superlinear condition.

Inspired by the above mentioned literatures and

the literatures-*-*

, by using a Green function of
third order two point boundary value problems and
Krasnosel’ skii fixed point theorem of cone expan-
sion compression type, the existence and nonexist
ence of positive solutions of the problem (0. 1)~ (0.
2) is studied. One must point out that the idea of in-
troducing a Green function of third order two point
boundary value problems to study four order bound-
ary value problems is stimulated by the works of

Yao[l.la]

knowledge,there are few authors that have applied

However, to the best of the author’s

such a technique to the singular problem.
1 Preliminaries

Let E be a Banach space, K a cone inE , K, =
fue Killul <r} oK, ={u€ K:|ul =r},
Kr={uec Kir<<|ul <R} ,where0<r<R
<t oo,

For convenience, one introduces the fixed point
theorem as follows, which is due to Krasnosel’
skiit™®l,

Lemma 1.1

over the reals,and let K EbeaconeinE . Let0<C

Let (E, || » || ) be a Banach space

r <R be real numbers. If T: K, — K is a completely
continuous operator such that either

KD [ Tull < lullu€ 9 Kg.and || Tu ||
= |ul wedK,,
or
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K2 | Tull = lull su € 9 Kg sand || Tu ||
< [lullvu€ 9K, .
Then T has a fixed point in K, ¢ .

Throughout the rest of the paper,let E = C[0,
1] ={u €& C[0,1]}, and

K = {u € B = (30— 1) u| =
p [ull}s
be with norm || u || = SEJpJ | () | .Clearly E is a
te[0.1

Banach space,and K is a positive cone in E .
Throughout the paper, one also assumes the
following conditions:
(HD) F:[0,1]X (0, 4+o0) > [0, +o°) is con-
tinuous;

(H2) g: (0,1) > [0, + ©o) is continuous,

"1
J t(1 =) g(t)dr <+ oo ;
0

(H3) 1imrz(1 — g (DF(u()dt = 0 ,for

nteod 0
all u(s) € E.

Now let G(z,5) be the Green’s function of the
linear problem
W =0,0<<t<1,
u(0) = u(l) =4 (0) =0,
which can be explicitly given by

J;sz(lt)2+s(lt)(ts),
G(ts) = 0<i<s<1,

—
%ﬂ(l—s)%ogtgsgL

(1. D

It is clear that for all s, € [0,1],

sup G(t.s) :%5(1—5)2, (1.2)

0="r=1

Gl <%t2(1—z>, (1.3)

G(t,s) = (1—1) supG(t,s). (1.4

O==r=1
Define the operator T by
t ("1

(Tw) (1) = J j GCrr9) F(svuls))dsde

t & [0,1]. (1.5)

It is easy to verify that a necessary and sufficient
condition for the problem (0. 1)~ (0. 2) to have so-
lutions is that u = Tu have fixed point.
Lemma 1.2 TK C K .and TK,x C K.
Proof Ifu € K,t € [0,1], then
Guangxi Sciences. Vol 18 Na 2, May 2011



*t (11
(Tu) (D) :J J G(r,s)g(s)F(s,u(s))dsde >
0J 0

t ("1
J J (1 —1) Supl]G(r,s)g(s)F(s,u(s))dsdr =

0

J r (1—r)er sup G(r,s)g(s)F(s,u(s))ds =
0 €
p @) S}lpJ G(z,5)g(s)F(s,u(s))ds =
r€[0,11J 0

1
p(I)J sup J G(z,9)g(s)F(s,uls))dsde =

0 z€[0.1

j)(z‘)J j G(z,9)g(s)F(s,u(s))dsde =
0J 0

t 1
(1) sup J J Gls9) g () F(sauls))dsde —

tel0,1]
PO || Tull .
Thus, TK C K ,i.e. TK, x C K . The proof is com-
plete.
Suppose that (H1), (H2) and
(H3) hold. Then T: K, x — K is a completely con-

tinuous operator.

Lemma 1. 3

*t ("1
Proof  First, for any » > 0, supJ J G(z,
17KI_ 0J 0

$)g(s)F(s,u(s))dsdr <<+ oo for all z holds. Thus T
K\{0} = C[0,1] is well defined.

In fact, p(D)r < u(p) <
ditions (H2) and (H3) that there exists N such that

r. It follows from con-

Fr(l — gD F(,ul(t))dt <1 fort << % .
0
t (11
(Tw) (1) = JJ G(z,9)g(s)F(s,u(s))dsde <
0J 0

11 11
”Gu,s)g(s)F(s,u(s))dsdr < H %s(l _

)7 g()F(s,u(s))dsdr = JV %s(l — $)?g(s)F(s,

1
u<s>>ds+L %:(1 gD F(syu(s)ds < 1+

1
L %s(l—s)zg(s)F(s,u(s))ds. (1. 6)
LetL = sup {(F(,u(t)):

€1

pPWOr<ult) <r},

(Tw) (1) < 1 —O—LJI %s(l — )7 g(s)ds <+ oo,

(1.7)
Second,T: K, x — K is compact and continu-
| — o0,
for n— oo . Obviously, p(Dr<u,,uy << R,n=1,2,

ous. Assume that u, su, € K, gand || w, — u,
<o+, In view of | F(¢tyu,) — F(tsu,) | — 0,n — oo for
any ¢t € [0,1] .and from Lebesgue Control Conver-
ges Theorem,one has
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*t ("1
| Tu, — Tu, | = HJ J G(z,9)g(s)[F(s,
0J 0

1
w, () — F(s,u,(s)) Jdsdz || <J %x(l—s)zg(s)

| F(ssu,(s)) — F(syu,(s)) | ds = 0,n — oo,
Thus, T:K,r — K is continuous.

Let D C K, ¢ be bounded,i.e., || ull << M for
all u € D and some M >0 . It is clear that u € D sat-
isfies u € K,.x . Thus,it is easy to prove that there is
a constant such that | Tu(¢) |< L, .

1
| (Tw)' () | =] J G(t,s)g(s)F(s,uls))ds | <
0

"1 "1
J sup G149 g () F () ds < J%m—

0 0=t 0
$)Pg(s)F(s,u(s))ds.

Similarly, from condition (H3),there is a con-
stant L, such that | (Tu)' () |<<L, .

So T(D) is uniformly bounded and equicontinu-
ous. From the Ascoli-Arzela Theorem, T(D) is rela-
tively compact. This completes the proof that T is
compact.

To sum up,one has proved T: K, x — K is com

pletely continuous. The proof is complete.
2 Main results

First,one defines some important constants:

limsup sup Ftw _ F,,
w0t t€L041] u
limsup sup Fiw _ F._ .liminf inf FGw _ fos
u—too 1€[0,1] u w0t 1€00,1] u
1
hmmf inf Ft,uw) = f. J sup G(z,
utoo 1€[0,1] u "12J) 0 o

"1
gl plsH)ds = A,%J s(1—5)g(s)ds = B.
0

From the above analysis,one knows,for all u €
K. .r »the fixed point of the equation (1. 3) is the so-
lution of the problem (0. 1)~ (0. 2). Next one will
look for the fixed point.

Theorem 2, 1 Suppose that (H1), (H2) and
(H3) hold. If BF, <<1<CAf.. .the problem (0.1)~
(0. 2) has at least one positive solution.

Proof First,one choosese > 0 such that (F, +
B < 1.
there exists H; > 0 such that

F(tyu) < (Fo4+euforallt € [0,1],u € (0,
H, 1.

For eachu € K with | u || = H, ,one has

From the definition of F, one sees that
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*1 1
| Tul = J J G(ys)g(s)F(s,ul(s))dsdt <

j J G g(s) (Fy +oul)dsdt < (Fy 4o [l -
0J 0
1
J 55— g(ds = BF, 4o [ull < [lull.
0
which means || Tu || <
K:llul =H}.

To construct Ku ,one chooses § > 0 and ¢ €

lull foru€a Ky = lue

1
(0 —) such that 12J sup Gt g () p(ds(f —

¢ celo.
0 =1
There exists H; > 0 such that

F(t,u) = (f.. —Ou for all t € [0,1],u €

Let H, = max{12H,c*,2H,}. If u € K such that

lwl| = H, ,for eacht € [¢,1] ,one has
w(D) = Hop(D) = Hy (56—t = Hy 2ot =
1

H) EC - Hg

Therefore, for eachu € K with || « || = H, ,one has
"1 "1
| Tu | = J JG(t,s)g(s)F(s,u(s))dsdz‘, >
0J 0
| [ra=o sup G g F Gl dsdr =
0J 0 te[0.1]

sup G(t,5)g(s)F(s,u(s))ds >

tel0,1]

1
2Jo

[—

LJ sup C(Z,s)g(s)u(s)ds(f —0) =
12)0 efo

1
%j sup G gD IS =) [l =
c t€esl

el s
which means || Tu | = [ u |l foru€ o Ky, ={u e
K:||ull = H,}, and H, > H, . Now that the con-
dition (K2) of Lemma 1.1 is satisfied, there exists a
fixed point of T in RHsz . The proof is completed.

Theorem 2, 2 Suppose that (H1), (H2) and
(H3) hold. If BF.. <<1<CAf, ,the problem (0. 1)~
(0. 2) has at least one positive solution.

Proof First,one choosese > 0 such that (f, —
e)A = 1. There exists H; > 0 such that

FGt,u) = (fy —e)uforallt € [0,1],u € (0,
H,].
For eachu € K with ||« || = H, ,one has

"1 "1
|| Tu || =J J G(,)g(s)F(s,uls))dsdt =

J J (=0 sup G(t,s)g(S)(fo —eul(s)dsdt =
0J 0
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fo—o Il u HJ 5 sup GG (9 pds = ACS, —

te [0,
D lull = lul.
which means || Tu | >
K:[lul =H}.

To construct Ky, ,one chooses 0 < & << 1 such
that (F.. + 8B < 1. There exists H;, = 2H, > 0
such that

F(t,u) <
[H;, + o).
Obviously,there exists’ € [0,1] and H, = H; such
that

| ul forue dKy = {u €

(F. +®u for all t € [0.,1],u &€

Ft.w) < F(/'.H,)

[O,l],u € [O9H2]-
Foru € K with ||« || = H, .one has

< (F.+&H,. forallt &

w() = H, p(0) :Hz%ﬁ Liy=H, ft >

1,
Hz 12C — Hg.
Therefore, for eachu € K with || « || = H, ,one has
11
I Tu || = J J Gt g()F(sauls))dsde <
0J 0

11
J j L= 9 (D F(sauls))dsdt =

0J0

1
J L =92 () Fsauls))ds< (F. +5>J Lia-

Digls)dsH, < H, = ||ul
< lull foruea K, = (u€
K. HMH = H,}, and H, > H,

dition (K1) of Lemma 1.1 is satisfied,there exists a

which means || Tu ||
. Now that the con-
fixed point of T in KH] .n, - The proof is complete,

Theorem 2.3 Suppose that (H1), (H2) and
(H3) hold. f BF (¢tyu) <<u, fort & [0,1],u & (0,+
co), the problem(0. 1)~ (0. 2) has no positive solu-
tions.

Proof Assume u(2) is a positive solution of the
problem (0. 1) and (0. 2). Then u(z) >0 for 0 <<t <<
1 ,and

11
[ wul = J J G(tys)g()F (s uls))dsde <

1 1
J %s(l — D2g (O F(s,uls))dsdt << [J %s(l —

Digls)ds]™! J —s(1 — ) g(Huls)ds <
0

] )
B La—te@dsllull = lul .

0 2
which is a contradiction. The proof is complete.
Theorem 2.4 Suppose that (H1),(H2) and (H3)
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hold. If AF (¢,u) > u .fort € [0,1],u € (0, +c2),
the problem (0. 1) ~ (0. 2) has no positive solu-
tions.

The proof of Theorem 2. 4 is quite similar to
that of Theorem 2. 3.

3 Example

Example 3.1 Consider the problem

u (W) g(OF(u()) = 0,0 <<t <1,03. 1)

u(0) = ' (0) = /(1) =4"(0) =0, (3.2)
where
PN
g = o5 0 << 1, (3.3)
Flrou() = w0000 o (3.0
5+u

and A > 0 is a parameter.

It is easy to see that F, = 0. 4A,F.. = f.. =52,
fo = 0.2, and

0.22u < F(t,u) <5Au,forallt € [0,1],
u>0.
It is also easy to verify, by direct calculation, that B
= 0.5,A>0.0781. From Theorem 2.1 we see that

, 1 5

if 2. 5609 =~ A <A< °p 5, then the problem
(3. 1) ~ (3. 4) has at least one positive solution.
From Theorem 2. 3 we see that if A < 5% = 0.4,

then the problem(3. 1)~ (3. 4) has no positive solu-

tions. From Theorem 2. 4 we see that if A = S = 6.

A
4021, then the problem (3. 1)~ (3. 4) has no posi-

tive solutions.
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