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Simultaneously Predicting Optimum pH Value and Opti-
mum Temperature in Catalytic Reaction of Beta-glucosi-
dase
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Abstract: The features of amino acids were used to simultaneously predict optimum pH value
and optimum temperature of beta-glucosidases. Firstly, the beta-glucosidases were quantified by
different features of amino acids as inputs, and their optimum pH value and optimum tem pera-
ture were served as outputs;secondly, the training was conducted by means of 20-2 feedforward
backpropagation neural network; finally, the validation was performed by three approaches,
subset validation, jackknife validation, and cross-validation. The results showed that among 24
features of amino acids only 4 features worked in the prediction model and the amino-acid distri-
bution probability as predictor gave better results. Thus, the method developed in this study
paved the way towards the prediction of functional parameters of enzymes based on their amino
-acid pro perties .
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In order to speed up enzymatic reaction, it is important to let the enzy matic reaction be at the op-

timal conditions. Generally the optimal working con-
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ditions are so elegant that we have to conduct many
expensive and time-consuming experiments to find
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is oftentimes difficult to manage.
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With the fast development in computational bi-
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ology and bioinformatics, it would be possible to de-
velop computational methods to predict the optimal
working conditions for novel enzymes based on pre-
viously obtained optimal conditions.

Actually, many studies so far have been directed
to the function-structure relationship of proteins in-
cluding enzymes. However, this relationship has yet
to connect with the optimal conditions for enzymatic
reactions, and this relationship is more or less relat-
ed to secondary, tertiary, and quaternary structures,
whose determinations are also costly and time-con-
suming.

Thus, the challenge arises whether we can use
very simple features, such as the features of amino
acids, to predict optimal conditions of enzymes, be-
cause the prediction would help us economically op-
timize enzy matic reactions.

As B-glucosidase (EC 3.2.1.21) can cut the B-
bond linkage in glucose molecules ', it plays an im-
portant role in biological processes. More notably, it
can degrade celluloses, which gives a great perspec-
tive in the fermentation of biomass into biofuels and
leads to more efforts to not only search for B-gluco-
sidases but also mutate B -glucosidasesm . Conse-
quently, we can find more and more B -glucosidases
with annotations of their primary structures but
without optimal conditions for enzymatic reactions.

Actually, there are many features of amino acids
available™ ™ , which could serve as predictors to pre-
dict the optimal conditions for B-glucosidase reac-
tions. However, it is yet to know which feature is re-
ally useful. In this study, we attempt to find which
of 24 amino-acid features can simultaneously predict
optimum pH value and optimum temperature of B-

glucosidases.
1 Materials and methods

1.1 Data

The data of B-glucosidases (EC 3.2.1.21) were
obtained from the Comprehensive Enzyme Informa-
tion System BRENDA up to October 2010”' . Under
the functional parameters of pH optimum and tem-
perature optimum, 34 B-glucosidases had their se-

quence information, and one had documented its mu-
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tant'” . Frequently, an enzyme can have several dif-
ferent optimum values of pH and temperature,
which was the case for four B-glucosidasesm .In to-
tal, we found 39 B-glucosidases with their sequence,
optimum pH value and optimum temperature in this
databank.
1.2 Predictive model

As there may be various linear and nonlinear
relationships between the feature of amino acid and
optimum pH value and optimum temperature of -
glucosidase, we used a 20-2 feedforward backpropa-
gation neural network displayed in Fig. 1 to account
for these relationships'® . In this model, the first lay-
er contained 20 neurons corresponding to 20 inputs,
which could be any piece of features related to 20
types of amino acids in B-glucosidase. The second
layer contained two neurons corresponding to two
outputs that are optimum pH and optimum tempera-
ture. The transfer functions were tan-sigmoid and
linear for two layers, and log-sigmoid for output.
The training algorithm was the resilient backpropa-
gation, which was the fastest algorithm on pattern
recognition in MatLab'” .
1.3 Features of amino acids

The very basic feature of primary structure of 3
-glucosidase was its amino -acid composition, and
then we had the molecular weights of amino acids
(row 2, Table 1). Moreover, we had the features of
amino acids related to the spatial properties listed in
rows 3~ 5 in Table 1", hydrophobic properties
listed in rows 6~ 10 in Table 1''", electronic proper-
ties listed in rows 11 ~17 in Table 1'"', and the sec-
ondary structure predictions listed in rows 18 ~24 in
Table 1''" . We weighed the values in Table 1 with
amino-acid com position because 3 -glucosidases were
different one from another in terms of amino-acid
compositions.

Another relatively recent feature about the pri-
mary structure was the amino -acid distribution
probability, which also represented spatial charac-

[15~17

teristics on protein " and was computed accord-

ing to the occupancy of subpopulations and parti-

8]

G . . . . .
tions'""', which gives each type of amino acid a dis-

tribution probability in an enzyme (T able 2).
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Table 1 Features of amino acids used as predictors for predicting optimum pH value and optimum temperature

Amino acid A R N D C E Q G H I
Mass(Dalton) 71.09 156. 19 114. 11 115. 09 103. 15 129. 12 128. 14 57.05 137. 14 113. 16
Surface area(A?) 115 225 160 150 135 190 180 75 195 175
Residue volume( A3) 166. 7 88.6 173. 4 114. 1 111.1 108. 5 138. 4 143. 8 60. 1 153.2
Vaﬂn3 der Waals volume 67 148 96 91 86 114 109 48 118 124
(A%)

Residue non-polar sur- 86 89 42 45 48 69 66 47 129 155
face area(A2)

Residue burial ( kcal/l 2. 15 2.23 1. 05 1.13 1.2 1.73 1.65 1.18 2.45 3.88
mol)

Side chain burial(kcal/ 1 1.1 —0.1 —0.1 0 0.5 0.5 0 1.3 2.7
mol)

Hydropathy index 4.50 4.20 —0.80 —0.90 —3.50 —0.70 —1.60 1. 80 —3.90 —3.50
Ranking of amino acid 9 15 16 19 7 18 17 11 10 1
polanities

pK, 9. 69 9.04 8.8 9.6 10. 28 9.67 9.13 9.6 9.17 9. 68
o1 0. 05 —0.26 —0.14 0.51 —0.01 0. 68 —0.1 0 —0.01 0. 06
Hy APH 0. 05 —0.75 —0.2 1.8 —0.01 1.25 —0.07 0 0.21 0.08
OR 0 —0.49 —0.06 1.29 0.01 0.57 0.03 0 0.22 0. 02
oy —0.01 —0.08 —0.04 —0.03 —0.03 —0.04 —0.05 0 —0. 06 —0.04
oF 0.05 0.27 —0.56 —1.77 0. 06 —1.14 —0.35 0 —0.58 0.04
Ay 0.05 0.26 0.24 0.51 0.01 0. 68 0.1 0 0.01 0. 06
P(a) 142 98 101 67 70 151 111 57 100 108
PMh) 83 93 54 89 119 37 110 75 87 160
PCturn) 66 95 146 156 119 74 98 156 95 47

(i) 0. 06 0.07 0. 147 0. 161 0. 149 0. 056 0. 074 0. 102 0.14 0. 043
fGt+ 1D 0. 076 0. 106 0.11 0. 083 0. 05 0. 06 0. 098 0. 085 0.047 0.034
fGit2) 0. 035 0. 099 0. 179 0. 191 0.117 0.077 0. 037 0.19 0.093 0.013
fG+3) 0. 058 0. 085 0. 081 0.091 0. 128 0. 064 0. 098 0. 152 0.054 0. 056
Amino acid L K M F P S T \% Y v
Mass(Dalton) 113. 16 128. 17 131. 19 147. 18 97.12 87.08 101. 11 186. 12 163. 18 99. 14
Surface area(A2) 170 200 185 210 145 115 140 255 230 155
Residue volume( A3) 166.7 168. 6 162.9 189.9 112.7 89 116. 1 227.8 193. 6 140
\(fz;ing)dcr Waals volume 124 135 124 135 90 73 93 163 141 105
Residue non-polar sur- 122 164 137 194 124 56 90 236 154 135
face area(A2)

Residue burial ( kcal/  3.05 4.1 3.43 3.46 3.1 1.4 2.25 4.11 2.81 3.38
mol)

Side chain burialCkcal/ 1.9 2.9 2.3 2.3 1.9 0.2 1.1 2.9 1.6 2.2
mol)

Hydropathy index —1.30 2.50 —0.40 —3.20 —3.50 2. 80 1.90 4.50 3.80 —3.50
Ranking of amino acid 3 20 5 2 13 14 12 6 8 4
polarities

pK. 9.6 8.95 9.21 9.13 10. 6 9.15 9.1 9.39 9.11 9.62
op 0.02 —0.16 0.08 0. 04 0 —0.03 —0.05 0. 06 0.05 0.01
Hy APH 0.07 —1.11 —0.04 0. 06 0.1 —0.05 —0.03 0.15 0.02 0.09
OR 0.05 —0.95 —0.12 0.02 0.1 —0.02 0.02 0.09 —0.03 0.08
oy —0.04 —0.05 —0.05 —0.08 —0.04 —0.02 —0.03 —0.12 —0.09 —0.03
oF —0.03 0.51 —0.3 —0.45 0.02 —0.38 —0.44 —0.24 —0.42 —0.04
Ay 0.02 0.16 0.08 0. 04 0 0.03 0. 05 0. 06 0.05 0.01
P(a) 121 114 145 113 57 77 33 108 69 106
PM) 130 74 105 138 55 75 119 137 147 170
P(turn) 59 101 60 60 152 143 96 96 114 50

(i) 0. 061 0. 055 0. 068 0. 059 0. 102 0.12 0. 086 0. 077 0.082 0. 062
fGt+ 1D 0. 025 0.115 0. 082 0. 041 0. 301 0. 139 0. 108 0.013 0.065 0. 048
fGi+2) 0. 036 0.072 0.014 0. 065 0.034 0.125 0. 065 0. 064 0.114 0.028
fGi+3) 0.07 0. 095 0. 055 0. 065 0. 068 0. 106 0. 079 0. 167 0.125 0. 053

o1: Inductive effect scale HyAPH: Normalized Mulliken population datafor the amino-acid side chains in the context of phenol, o : Resonance effect

scale 6 o; Normalized polarizability index, op: Field effect index, Aj: Additional scale £(i): Frequency of the Ist residuein turn, fGt+1), Frequency of

the 2nd residuein turn, f(i+2): Frequency of the 3rd residue in turn, f(i+3): Frequency of the 4th residue in turn.
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Table 2 Amino-acid composition and distribution probabilities
of QIAT27 3-glucosidase.

Amino acid  Number Distribution probability
A 54 0.015
R 19 0.017
N 21 0. 027
D 42 8.903¢-3
C 6 0. 039
E 26 0. 040
0 23 0. 040
G 35 5. 69e-3
H 10 0. 191
I 32 0. 037
L 55 0.012
K 23 7.082e-4
M 14 0. 055
F 24 0. 040
P 26 4.712¢-5
S 49 1. 650e-5
T 48 8.611e-3
W 12 4.432e-3
Y 22 0. 051
v 31 9. 435¢-3

1.4 Model development

Of 39 B-glucosidases listed in T able 3, 23 served
as training group to generate the neural network
model parameters, weights and biases, and 16 served
as validation group. This is a very traditional ap-
proach.

A more recent approach is the jackknife, and
the jackknifing of delete-1 observation was used 7,
i. e. one B-glucosidase of 39 B -glucosidases did not
attend the training, while the generated model pa-
rameters were used to predict optimum pH value
and optimum temperature of omitted 3-glucosidase,
until that each B-glucosidase went through this jack-
knifing process.

The third approach is the cross-validation, i.e.
39 B-glucosidases were split into 3 subsets contai-
ning 13 B-glucosidases each, then one subset did not
attend the training, but the generated model parame-
ters were used to predict optimum pH value and op-
timum temperature in omitted subset, until that each

subset went through this cross-validation process.
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Another way to divide 39 B-glucosidases was to split
B-glucosidases into 13 subsets containing 3 B-gluco-
sidases each, and to go to the same process as de-
scribed above.

The above three approaches were applied to
each predictor listed in Table 1 in order to compare
their predictions statistically .

1.5 Statistics

For each predictor; one hundred trainings were
conducteds and the obtained 100 sets of weights and
biases were used to predict optimum pH value and
optimum temperature 100 times, and their mean and
standard deviation were used to compare the recor-
ded optimum pH value and optimum temperature

for each B—glucosidaseI 2
2 Results

Fig.1 is the scheme of neural network for mod-
el development. T his model is particularly designed
to simultaneously account for the features of amino-
acids and optimum pH value and optimum tempera-
ture of B-glucosidases.

For training of neural netw ork, the initialization
of weights and biases and number of training epochs
govern whether the neural network can converge.
We used the random initialization function to initial-
ize weights and biases, and 350 training epochs. Fig.
2 displays training processes in 23 B -glucosidases
with different features of amino acids (Table 1).1In
this figure, each line represents a training process
from the beginning to the end, and we can find the
convergence reached within 350 training epochs with
any random initialization, which lays the foundation
to guarantee our training process.

In Fig.3, we can see that the percentage of cor-
rectly predicted B -glucosidases improves with re-
spect to training epochs. Actually, what we need to
see is whether this percentage is stable along the
training process, which is the case in Fig. 3, so we
can exclude the possibility of over-fitting or over-
generalization using this neural network model. Al-
s0, Fig.3 demonstrates that predictions of optimum
pH value and optimum temperature using some fea-
tures of amino acids can reach a pretty good level.
As we used three different approaches to develop
predictive models, Fig. 3 is only related to one ap-
proach, and Fig. 4 show s the correctly predicted per-
centage improves with respect to training epochs in
the other two approaches. In general, all three ap-
proaches reach the similar results.
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Fig. 1 20-2 feedforward backpropagation neural netw ork
to model the relationship between 20 amino-acid features of -
glucosidase and optimum pH value and optimum temperature.
Each tri-circle represents a neuron.

IW{ 1} : the input weights LW{2, 1}: the layer weights to
the second layer from the first layer b{ 1} and b{ 2} ; the biases

related to each neuron at the first and second layers.
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Fig. 2 Convergence of mean squared error performance
function with 100 different initial weights and biases generated
by random initialization function in training

(a)s X No., (b)o, X No., (¢)f(1)X No., (d)DP.

No.: amino-acid composition 6 |: inductive effect scale, 6.

normalized polarizability indexs {(i): frequency of the lst resi-

due in turn, DP: amino-acid distribution probability.
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Fig. 3

value and optimum temperature by different features of amino

Percentage of correctly predicted optimum pH

acids

(a) Training, (b) Validation, (¢) Total.

The training and validation groups contain 23 and 16 -
glucosidases.

-@—:pH by 6, X No., = pH by 6. X No., -m: pH by {
()X No., 4 pH by DP, -&: Tm by 61X No., =~ Tm by 0«
X No., —; Tm by f(i)X No., <~ Tm by DP.

pH:optimum pH value, Tm: optimum temperature, No. :
amino-acid composition, 6;; inductive effect scale, 6.: normal-
ized polarizability index, f(i): frequency of the st residue in
turn, DP: amino-acid distribution probability, X : multiplica-
tion.

Table 3 details the statistical comparison be-
tw een predicted and recorded optimum pH value and
optimum temperature. The data generated in Table 3
are based on the very traditional approach to divide
the training and validation groups, where the predic-
tion should be good if there is no statistical differ-
ence between recorded and predicted optimum pH
value and optimum temperature, respectively. The
prediction based on amino-acid distribution probabil-
ity is clearly better than the predictions based on

other features of amino acids.
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Table 3 Statistical comparison between recorded and predicted optimum pH value and optimum temperature(mean—+SD, n— 100).

A cession Recorded

Optimum pH value predicted by predictor

Optimum temperature predicted by predictor

Group number  pH - Re(,:]?r:l‘ﬂ -
value a1 X No. o X No. f(i) x No. DP oX No. 64X No. f(i) X No. DP
Train- Q9AT27 4 5.83+0.10 5.8 +0.14  58+0.09 4.05+0.13* 350 46.39+4.92 % 44, 64+5.73 * 47.43+4.24 * 50.0040. 02 *
" Q8TGI8 4 5.70+0.21  5.57+0.32 5734018 4.35+0.35* 71.5 52.80+6.86 565818 8 * 51.74+6.40 71.48+0.07 *
Q12715 4. 5.64+0.28 5.54+0.34 5714021  4.66+0.25* 70 56.34+11.80* 58.90+11.34* 52. 66 +8.53  69. 91 0. 76 *
A1C3]9 5 5.82+0.08 58+0.00 58 +0.07 5.00+0.13* 40 47.47+3.05 45 71+4.08 * 47.98+2.97  40.00+0. 08 *
Q8TOW7 5 5.75+0.11  5.77+0.13 5784007 5.07+£0.23* 50 51.9445.17 * 51.19+3.35 * 50.02+2.70 * 50. 1040. 78 *
Q4U4W7 5 5.74+0.14  5.55+0.35* 5714021 5.03+0.12* 50 50.77+5.17 * 57.29+10.90* 52. 13+7. 98 * 50. 01 0. 03 *
A9UIGO 5 5.6610.26  5.54+0.34* 571+0.21 4.934+0.25* 70 55.32410.19 58, 71 +11.27 * 52. 69 +8. 67 * 70. 02 +0. 10 *
P94248 5. 5.84+0.11  59+0.16 584010 5.5140.11% 45 45.8045.43 * 43.371+6.56 * 47.26+14.54 * 45.0040. 04 *
008331 5. 5.73+0.16 *  5.62+0.26* 573+0.16 * 5.51+0.15* 65 53.63+7.55 * 56.21+8.20 * 52.03+6.73 * 65.00+0. 02 *
Q9SLAO 5. 5844011 58013  58+0.09 5.64+0.12* 46.14+5.19 * 44.31+5.44 * 47.43+4.12 * 40.0040. 02 *
P49235 5. 5.8340.09 * 5.83+0.11 % 58140.06* 5.67+0.19* 50 46.5614.56 * 46. 12+4. 46 * 48.19+3.03 * 50. 00+0. 04 *
Q86D78 6 5.85+0.11* 591+0.16 * 58 +0.10 * 6.04+0.12* 35 45.69+5.60 * 43.31+6.55 * 47.28+4.48  35.00=+0. 03 *
Q2WGB4 6 5.8340.08  5.88+0.12* 58400 5.99+0.09% 37 46.94+3.78  44.76+5.01 * 47.65+3.77  37.0040. 03 *
Q875K3 6 5.8240.11* 587+0.12* 584009 * 5.98+0.09* 40 46.7345.47 * 44.24+5.57 % 47.38+4.26 * 40.0040. 02 *
Q25BW5 6. 5.8+0.15  591+0.18 584000 6.47+0.13* 30 45.91+5.47  44.39+5.90 47.45+4.09  30.01=+0.05 *
P15885 6. 5.8+0.12  591+0.16  58+0.10 6.46+0.11* 30 45.68+5.49 43, 18+6.75 * 47.26+4.52  30.0040. 03 *
Q5976 6. 5.86+0.19  591+0.19 584000 6.54+0.11* 30 46.0316.29  43.89+7.00 * 47.45+4.09 30.0040.03 *
Q9H227 6. 5.8+0.09 58+0.14 584010 6.43+0.12* 50 46.08+4.95 * 44.48+5. 64 * 47.36+4.30 * 50. 01 0. 04 *
Q746L1 6. 5.70+0.24  5.68+0.34 5 73+0.21 6.4440.21* 88 57.95+15.12%62. 97+16.16 * 53. 58 +10.37 87. 99 +0. 04 *
BIK7M5 6. 5.6840.25  5.68+0.37 5734021  6.35+0.21° 95 58.47414.94 64.33+17.67 " 53. 58 £10.59 94.96+0. 18 *
Q08IT7 7 5.85+0.13 58 +0.15 584008 6.93+0.12° 30 46.20+5.24  44.36+5.71  47.74+3.61  30.00+0. 03 *
Q6QGYS5 7 5.85+0.11  58+0.14  58+0.10 6.984+0.11° 40 45.91+5.00 % 43.97+5.75 * 47.29+4.46 * 40.01 +0. 04 *
Q47RE2 7. 5.84+0.15  5.90+0.17 584000 7.14+0.13" 25 46.08+5.94  43.87+6.77 47.39+4.22  24.940.06 *
Valid- Q08638 3. 5.690+0.24  5.67+0.37 5744021 5.71+1.26° 85 58.43+15.30 " 64. 9 +18.80 * 53. 66 +10.85 67. 71 +14.73 "
o B5STWK3 4. 5.62+0.31 5514036  571+0.2 5.1240.90° 22 58.70+17.26 61.04+16.14 52.9249.54  59. 08 9. 07
Q12715 4. 5.6410.28 5.54+0.34 5714021  4.66+0.25" 65 56.34111.80 " 58.90+11.34 " 52. 66 8. 53 * 69. 91 +0. 76
B5TWK3 5 5.62+0.31  551+0.36 5711022 5.1240.90" 37 58.70+17.26 % 61. 04 +16.14 * 52. 92 +9. 54 * 59. 08 9. 07
B6ZKM3 5 5. 81£0. 14 5.79£0. 27 5.7840.09 5.92+1.59* 30 48.504+5.77  51.01 +10.65*49.31 3. 72 49, 29+17.14*
Q2UUD6 5 5.6810.20  55740.32"% 572+0.18 4.964+0.66* 60 54.37+10.84%56.98+11.75°51. R2+7. 17 * 60.20+4. 11 *
Q9SPK3 5 5. 84+0. 11 5.90+0.15  583+0.09 6.09+0.98" 50 46.0315.38 * 43.75+6.48 * 47.32+4.38 * 62.3449.92
A9UIGO 6 5.66+0.26 *  5.54+0.34* 5714021 * 4.93+0.25 70 55.32410.19 % 58. 71 +11.27 * 52. 69 8. 67 * 70. 0240, 10 *
0615% 6 5.8340.09 % 5.87+0.11 % 584008 5.53+1.29* 30 46.64+4.28 44.75+5.14  47.88+3.89  60.57+10.65
Q12601 6 5.80+0.19 * 578+0.25* 57940.12* 5.26+1.00% 35 48.04+5.40 48.37+8.17 * 48.83+4.06 60.97+10.07
P26208 6 5.854+0.18 * 5.89+0.26* 58140.10 * 6.84+1.22% 65 47.14+6.83  48.22+8.77 * 48.77+4.16  59.84+14.00*
P1482 6 5.804+0.13* 579+0.16 * 5794+0.05 5.54+1.55* & 49.34+5.86  50.58+5.71 49.24+2.64 57.36+17.67*
P96316 6. 5.68+0.23  5.57+0.34* 5714020 5.76+1.23* 35 55.81414.34 61. 65+16.69 * 53. 46 +12.27 * 65. 98 +11.55
Q9C3729 6. 5.70+40.20  5.59+0.32 5714020 5.36+1.05* 54.70412.02* 60. 20 +16.63 * 53. 20 £10.99 * 73. 78 +13.01 *
8?1618257 6. 5.844+0.10  5.88+0.14 58+0.10 6.5140.30* 46.0344.97 * 44.40+5.66 * 47.35+14.32 % 47.942. 88 *
P96316 6. 5.68+0.23  5.57+£0.34  571+£0.20 5.76+1.23° 45 55.81+14.34 " 61. 65+16.69 " 53. 46 +12.27 * 65. 98 +11.55 *
Total — — 9 15 7 38 — 24 33 20 33
perfor-

m ance

No. : amino-acid composition, 61: inductive effect scale, 64: normalized polarizability index f(i):frequency of the Ist residue in turn, DP:amino-acid distribution probabili-
tys Tm: temperature, X : multiplication.

3 Discussion

The model used in this study can account for

any possible interaction between pH value and tem-
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perature if such an interaction would exist. Statisti-
cally, the two-way ANOVA could detect a possible

interaction between pH value and temperature al-

though the available data should be well designed
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for this purpose which are not the case for the data
in this study . So, the neural network model has a big

advantage over other models, which usually account

for a single predicted variable.
(a)
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Percentage of cellulases with correctly predicted pH value /temperature
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25 75

Fig. 4 Percentage of correctly predicted optimum pH
value and optimum temperature by different amino-acid fea
tures

(a) Jack Knifing of delete-1 glucosidase, (b) 13-fold cross-
validation, (¢) 3-fold crossvalidation.

®— pH by ;X No., = pH by 6. X No., -m: pH by f
(D)X No., —: pH by DP, -0~ Tm by ;X No., —~; Tm by o,
X No., <34 Tm by f(DX No., <4+ Tm by DP.

pH: optimum pH value, Tm: optimum temperatures No. :
amino-acid composition 6 : inductive effect scale, 6.: normal-
ized polarizability index, f(i): frequency of the lst residue in
turn, DP; amino-acid distribution probability, X ; multiplica-
tion.

Actually, the prediction of optimal working
condition for enzymes is an understudied area, thus
itis important to develop methods along this line of
studies. Experimentally and practically, it is impor-
FEAE 2011 8 A %18 A% 3

tant to develop methods to use as simple information
as possible to predict the optimal working condition
for enzymes.

For an experimentalist, it would be easier to
measure optimum pH value as well as optimum tem-
perature than to predict. However, it is only the
model that can provide the basis for generalization.
Moreovers the model would provide the basis for
simulation of catalytic reaction using computer.
Thus, our study can be considered as a small step
towards such direction.

The results suggest that the amino-acid distri-
bution probability appears better than other features
of amino acids, which is reasonable because it is
mainly related to amino -acid spatial distribution.
Nevertheless, more studies are needed in order to
better predict the optimal working conditions in dif-

ferent enzymes.
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Kfa xR b 20988 2 kR, PIAFHA R FF 6908 8 ZPTA i R EF X X BH IR X247, HFE KRR
Fih, Smil hef o K fe — R AR ST A A A A R K. 2 R fTE M2 K R AR — WA A S
K. HPo) — AR, R TET 25 5T LA 094 SER F4 F R AR K, E R B R &, RLAH
FEFE ARG T AN, &5 me Al — A W FR Ta FH MmN, TTAEERAMER, G2 FF, 4
EE IO N1

2t R FIE R AL RN LN FPRPafk 2%, Z KMk RS KK R AR89 — & L 15
HHE KL b K Paad 8, 5 = A4 ek 24 1500 BK L Z R, 28 KL MR B A B E
Feohdp, RA BT BE Toh =8 §FEH AR K. £ LDH 900 K F6 AR BF B, f . A fesk 1 E &
AR, B AN E K 2RI T A T AMK A= AL PIRET RA RMH XL TG, B, K= A A
HE RT AAA A K. K Z4) AR A —AAMHLE SE R TH RS RI HAE  FREmA LR
A% (GPS) e,

122, B aTiX MERPEA, —A A KET N RE RO RS B AERL 1%, HFER &1, 2
LR BOYEEBR FETR 1504 B, Boh, A R A 2R B b — R Ak AT R AL B K KA RS AT
T 203 mAK .
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