杉寄生的脂溶性成分分析*

Liposoluble Components from Macrosolen cochinchinensis (Lour.) Van Tiegh.

陆国寿¹,陈 丞^{2**},卢文杰,陈家源¹,谭 晓¹,黄建猷¹,黄周锋¹ LU Guo-shou¹, CHEN Cheng², LU Wen-jie¹, CHEN Jia-yuan¹, TAN Xiao¹, HUANG Jian-you¹, HUANG Zhou-feng¹

- (1. 广西中医药研究院,广西南宁 530022; 2. 广西壮族自治区食品药品检验所,广西南宁 530021)
- (1. Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, Guangxi, 530022, China; 2. Guangxi Institute for Food and Drug Control, Nanning, Guangxi, 530021, China)

摘要: 为了研究杉寄生的化学成分,采用硅胶柱层析、甲酯化和气相色谱-质谱-计算机联用技术对其脂溶性成分进行分析和鉴定,结果分离出 27 个组分,确认了其中的 25 个成分。这些成分主要为萜类化合物,均为国内首次在该植物中鉴定出。

关键词:杉寄生 脂溶性成分 气质联用

中图法分类号:TQ460.7⁺2 文献标识码:A 文章编号:1005-9164(2013)04-0279-03

Abstract: Liposoluble components from *Macrosolen cochinchinensis* (Lour.) Van Tiegh. were isolated by silica gel column chromatography and analyzed by GC-MS-DS technique, respectivily. 27 components were separated and 25 of them were identified. Fatty acids are major chemical constituents of petroleum ether extract from *Macrosolen cochinchinensis* (Lour.) Van Tiegh..ll of these compounds were first identified from this plant.

Key words: Macrosolen cochinchinensis (Lour.) Van Tiegh., liposoluble components, GC-MS

杉寄生收载于《中华本草》^[1],为桑寄生科植物鞘花的茎枝,拉丁植物名 Macrosolen cochinchinensis (Lour.) Van Tiegh. [Loranthus cochinchinensis Lour.; Elytranthe cochinensis (Lour) G. Don],分布于华南、西南及福建、西藏等地。其性甘,味苦,性平;具有祛风湿,补肝肾,活血止痛,止咳,止痢的功效。主要用于风湿痹痛,腰膝酸痛,头晕目眩,脱发,跌打损伤,痔疮肿痛,咳嗽,咳血,痢疾等症。广西部分地区拥有大面积的杉木种植,所以杉寄生药材在我区成为一种资源相对丰富,应用较为广泛的一种药材。其在祛风湿、补肝肾等方面有着确切的疗效,在民间应

用较为广泛,是一种值得深入开发和利用的具有广西特色的中药资源。

目前尚无杉寄生药材化学成分研究的内容报道。基于此,有必要对杉寄生药材进行系统的化学成分研究。为充分开发和利用该药材资源,研究采用硅胶柱层析、甲酯化和气相色谱-质谱-计算机联用技术对杉寄生脂溶性成分进行分析和鉴定,结果分离出 27 个组分,确认了其中的 25 个成分。

1 材料与方法

1.1 材料与仪器

杉寄生药材采于广西恭城县,由广西中医药研究院何开家主任中药师鉴定为杉寄生 Macrosolen cochinchinensis (Lour.) Van Tiegh.;石油醚、乙酸乙酯、三氯甲烷、甲醇等试剂均为分析纯;仪器为美国Agilent Technologies 公司 HP6890GC/5973MS 气相色谱-质谱联用仪。

收稿日期:2013-09-10 修回日期:2013-09-20

作者简介:陆国寿(1980-),男,助理研究员,主要从事天然药物研究。

*广西卫生厅中医药科技专项课题(GZPT1230);广西自然科学基金项目(2013GXNSFBA019204)资助。

**通讯作者:陈 丞(1979-),男,主管药师,主要从事药物分析。

广西科学 2013年11月 第20卷第4期

1.2 实验方法

1.2.1 杉寄生脂溶性成分的提取与分离

取杉寄生药材 9. 5kg, 粉碎成粗粉,加 4 倍量 95% 乙醇回流提取 4 次,每次 1. 5h,过滤,药渣弃去,滤液合并,回收乙醇并浓缩至无醇味,得浸膏,浸膏加水适量使其混悬,依次用石油醚($60\sim90^{\circ}$)、三氯甲烷、乙酸乙酯萃取,回收溶剂后分别得各部位提取物量为 51.0g,156.3g,131.1g。

石油醚 $(60\sim90^{\circ}\text{C})$ 部位采用硅胶柱层析,依次用石油醚-乙酸乙酯 $(98:2\rightarrow95:5\rightarrow93:7\rightarrow90:10\rightarrow80:20)$ 梯度洗脱,共收集 216 个流份,每份 500mL,第 $1\sim2$ 流份为半固体油状物,备用。

乙酸乙酯部位采用硅胶柱层析,依次用氯仿-甲醇(100:0→98:2→90:10→80:20→70:30)梯度洗脱,收集得 230 个流份,每份 500 mL,第 $1\sim5$ 流份为半固体油状物,备用。

合并上述石油醚部位及乙酸乙酯部位的半固体油状物,取 118 mg 半固体油状物进行甲基化 $[2^{-4}]$:将样品置于 100 mL 具塞烧瓶中,加石油醚($60 \sim 90 ^{\circ}$)一苯(1:1,V/V) 20 mL 使其溶解,并加入 0.4 mol/L KOH-MeOH 溶液 10 mL,摇匀,于 $40 ^{\circ}$ 恒温水浴 30 min,停止加热,再加入纯净水 20 mL,振摇,待分层清晰后分取上清液,上清液加入无水硫酸钠脱水后过滤,滤液作为 GC-MS 分析试样。

1.2.2 GC-MS条件

GC 条件: HP-5MS 石英毛细管柱(30mm× 0. 25mm×0. 25μm);程序升温:从 150℃开始,先以 3℃/min 升至 200℃,保留 2min 后,以 3℃/min 升至 260℃,柱流量为 1.0mL/min;进样口温度 250°С;柱 前压 100kPa;进样量 1.0μL;分流比 10:1;载气为高纯氦气。

MS 条件:电离方式 EI;电子能量 70;传输线温度 250° C;离子源温度 230° C;溶剂延迟:4min;四极杆温度 150° C;质量范围 $35\sim500$ g;色谱峰面积归一化法计算各主要成分的相对含量。采用 wiley7n. l 标准谱库计算机检索定性。

2 结果与分析

测试样品的总离子流(TIC)(图 1)。经 GC-MS 检测,所测成分的质谱图经计算机质谱数据库检索和比对,按面积归一化法测得各组分的相对百分含量,结果见表 1。分析结果表明,脂溶性成分的主要化学成分为萜类化合物,含量较高的成分为 β -香树素乙酸酯(18.80%),其次为3-氧代-乌苏-12-烯-24-酸(11.43%),再次为羽扇烯酮(10.27%)。

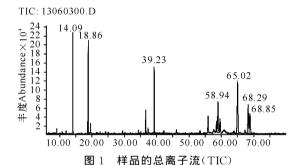


Fig. 1 TIC of sample

表 1 杉寄生脂溶性成分的 GC-MS 分析结果

Table 1 Analysis the liposoluble constituents of Macrosolen cochinchinensis (Lour.) Van Tiegh, by GC/MS

编号 No.	时间 (Min)	化合物 Compounds	分子量 Molecular mass	相似度 Similarity(%)	分子式 Formular	相对含量 Relative content(%)
1	9.07	十四烷酸 Tetradecanoic acid	228	96	$C_{14}H_{28}O_2$	0.37
2	10.76	蒽 Anthracene	178	83	$C_{14} H_{10}$	0.26
3	11.98	6,10,14- 三甲基-十五烷- 2- 酮 6,10,14-Trimethylpentadecan-2-one	268	78	$C_{18}H_{36}O$	0.25
4	14.08	十六烷酸 Hexadecanoic acid	256	99	$C_{16}H_{32}O_2$	6.92
5	18.67	十八碳二烯酸 9,12-Octadecadienoic	280	99	$C_{18}H_{32}O_2$	0.91
6	18.85	十八碳烯酸 9-Octadecenoic acid	282	99	$C_{18}H_{34}O_2$	7.39
7	19.57	十八烷酸 Octadecanoic acid	284	98	$C_{18}H_{36}O_2$	1.24
8	25.02	二十烷酸 Eicosanoic acid	312	91	$C_{20}H_{40}O_2$	0.16
9	30.22	二十二烷酸 Docosanoic acid	340	91	$C_{22}H_{44}O_2$	0.16
10	34.34	二十七烷 n - Heptacosane	380	78	$C_{27} H_{56}$	0.41
11	35.11	二十四烷酸 Tetracosanoic acid	368	87	$C_{24}H_{48}O_2$	0.28
12	36.59	二十七烷醇 n - Heptacosanol	396	91	$C_{27}H_{56}O$	2.71
13	37.34	角鲨烯 Squalene	408	90	$C_{30}H_{48}$	0.55
14	39.23	二十九烷 Nonacosane	408	98	$C_{29} H_{60}$	8.43
15	42.16	二十九烷醇 Nonacosanol	424	87	$C_{29}H_{60}O$	0.62
16	46.13	三十二烷 Dotriacontane	450	78	$C_{32} H_{66}$	0.76

续表 1 Continue table 1

编号 No.	时间 (min)	化合物 Compounds	分子量 Molecular mass	相似度 Similarity(%)	分子式 Formular	相对含量 Relative content(%)
17	53.40	三十二烷醛 Dotriacontanal	464	91	$C_{32}H_{64}O$	0.87
18	55.88	4,4,6a,6b,8a,11,11,14b-Octamethyl-1,4, 4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 14,14a,14b-octadecahydro-2H-picen-3-one	424	90	$C_{30}H_{48}O$	4.65
19	57.66	β-香树素 β-Amyrin	426	83	$C_{30}H_{50}O$	1.27
20	58.50	4,4,6a,6b,8a,11,12,14b-Octamethyl-1,4, 4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a, 14,14a,14b-octadecahydro-2H-picen-3-one	424	94	$C_{30}H_{48}O$	3.38
21	58.94	羽扇烯酮 Lupenone	424	93	$C_{30}H_{48}O$	10.27
22	60.78	α -香树素 α -Amyrin	426	90	$C_{30}H_{50}O$	2.10
23	65.01	β-香树素乙酸酯 β-Amyrin acetate	468	93	$C_{32}H_{52}O_2$	18.80
24	68.29	3- 氧代-乌苏- 12 -烯- 24- 酸 3-oxo-urs-12-en-24-oic acid	454	94	$C_{30}H_{46}O_{3}$	11.43
25	68.85	蒲公英甾醇乙酸酯 psiTaraxasterol acetate	468	87	$C_{32}H_{52}O_2$	8. 24

3 结论

通过毛细管气相色谱和气相色谱-质谱-计算机分析,从杉寄生醇提物石油醚部位及乙酸乙酯部位检出的 27 个组分中首次鉴定出 25 个组分,在检出的 27 个组分中的 α -香树素、 β -香树素具有抗炎、镇静、防肿瘤的药理作用,目前除了用作医药化工中间体外,也用于制备植物杀螨剂^[5,6],可见杉寄生中的脂溶性成分具有一定的开发利用价值。本研究为进一步开发和利用杉寄生的药用价值提供了科学依据。

参考文献:

[1] 国家中医药管理局《中华本草》编委会. 中华本草:第2

册[M]. 上海:上海科学技术出版社,1999:600-601.

- [2] 陆国寿,谭晓,陈家源,等. 小槐花中的脂溶性成分分析 [J].广西科学,2012,19(4):355-357.
- [3] 陈家源,谭晓,卢文杰,等. 田皂角中的脂溶性成分分析 [J].广西科学,2011,18(3):226-227,232.
- [4] 曾春兰,卢文杰,牙启康,等.大叶千斤拔脂溶性成分分析[J].广西科学,2011,18(2):151-152,157.
- [5] 北京农学院. α-香树素杀螨剂及其制备方法:中国, CN101743961AΓP¬. 2010-06-23.
- [6] 北京农学院. β-香树素杀螨剂及其制备方法:中国, CN101731212A[P]. 2010-06-16.

(责任编辑:尹 闯)

2014年,《广西科学》根据广西乃至全国科技发展趋势和学科发展动态,以及广西社会经济发展的需要,设立特色栏目,邀请国内外知名专家担任编委和栏目主编,集中地、大幅度地、广泛地报道具有原创性,能反映广西特色资源和特色学科的学术论文,适量基础学科方面的学术论文。其任务是介绍上述诸领域中的新发现、新理论、新方法、新技术、新产品及有关科技信息,为推动广西各学科的发展,加强国内国际间的学术交流,加速人才培养和现代化建设服务。

《广西科学》2014 年出版计划

为了实现上述目标,2014年本刊的栏目设置有:生物技术、生物物理、林产化学、近海与滨海湿地、海洋环境、藻类、化学化工、材料物理、基础数学、民族中药、中药资源开发、生物环保、食用菌等。每期刊登2~3个栏目,每个栏目刊登5~9篇的论文。欢迎国内外科技工作者根据《广西科学》2014年的出版计划惠稿本刊,共同促进期刊的发展。

此外,《广西科学》还将建立期刊网站,通过网站为作者、读者、审稿者和编委提供全方位的服务:为作者提供网上投稿、作者简介、优先发表论文等服务;为读者提供所有过刊的论文免费下载服务;为审稿者提供网上专栏简介、过刊论文免费下载服务、专业情报查询等服务;为编委提供专门网页发布简介和成果介绍等服务。