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Quantitative Prediction of Michaelis- Menten Constant

for o-Amylase and Its Mutants during an Enzymatic Re-

action*
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Abstract: [Objective] We attempted to develop models to quantitatively predict the Michaelis-
Menten constant Km with information about primary structure of q-amylase, which is a crucial
enzyme for a-1-4 glucosidic linkages hydrolysis in starch, while Km is a very important parame-
ter in enzymatic reactions. [Methods)]By means of neural network,535 properties of amino acids
were used to quantitatively predict Km value of a-amylase Amy7C and its 52 mutants, which
were divided into two datasets, 33 used for model training and the rest for model validation. The
training and validation were conducted firstly by means of two-layer (20-1) feedforward back-
propagation neural network, and then by multi-layer neural network models. [ResultsJ]Among
535 screened properties of amino acids, 109 properties can work as predictor and the dynamic
properties give better results with 3 converged out of 4 in 20-1 neural network model. Howev-
er,the best predicted results came from the amino acid properties with physicochemical proper-
ty and second structure, of which nine predictors were conducted by seven multi-layer neural
network models. The results showed that the increase in complexity of predictive models did
not give too much improvement,indicating that the simpler 20-1 and 20-5-1 models should be

the first choice. [Conclusion] The Michaelis-Menten constant Km of a-amylase can be quantita-

tively predicted by some amino acid properties

through neural network, which paves the way for
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quantitatively predicting parameters in enzymat-

ic reactions according to the information of pri-

mary structure of enzyme.

Key words:amino acid properties,q-amylase, Km

value,quantitative prediction

W E LB B Yo VE 8 il & — Tl 21 2558 8 /K A B8 L 100 Ko {EL

S RN P S R ST — FR o VE A AT
S48 8 B TINOK QR A K (09RO, [ 35 )
1 i B R AT R 535 A E R s P e B o T

Guangxi Sciences, Vol. 21 No. 6,December 2014



K Amy7C K 52 DAL ) Km {8, Horb 33 B TAE RIS, HoA i TREBLSGHIE . BB XUZ 1Y
201 FiJ 15 1) A% 5 0 i 28 1) 46 05 A T0I0 , SR 05 X 22 J2 Pl 22 ) 28 B R EAT R 1k, (45 SRY535 Fh & Bk e Jm ok b A
109 i J&@ PETT LA B0, Horh sl 25 )8 M 5 S 2R B 4 D S E MBI h A 3 B T L TR AL TR
U0 AEL DL 0 R o T ) e R 20 ol o 1 TR T B A A BRI A, X 9 AR I TR 45 2R e e 1 TR R
JBAYEIEAT 7 T 22 )2 1 2 ) 2 AR AL 0L, 45 SR I TR 0 N AR R Y 52 2% BB O AN BE 4R e T 45 2R BRORS YR E L R B O

FARREAL 0 20-1 BY 20-5-1 2 B TN A AR 0 e . 58 I8 Do VE A T A AR STV Y 0K TR B Ko, AT LU T 3 26

KL TR Ja 20 e o 8 X AR T R AT AU L O T R G 1 0 R A A E

It %
KR AR
FESES. Q556 .2

o TER B Km {H
XEkARIZAD A

SE it T

[ Research significance]For substrantially eco-
nomic development,the so-called green economy re-
quires humans to pay great attention to their sur-
rounding environments and to apply renewable re-
sources to economic development. Under such con-
text,the bio-fuel industry would play a more impor-
tant role either in our daily life or in economic devel-
opment, and consequently the enzymes would be
crucial for bio-fuel industry. a-Amylase(a-1-4 D-glu-
can glucanohydrolase) , which catalyzes endohydrol-
ysis of a-1-4 glucosidic linkages in starch and any re-
lated oligosaccharides to make oligosaccharides and

[1]

glucose '~ ,is widely used in modern industries. Re-

cently much attention is paid to its application in

[2~%) Many chemicals produced by

bio-fuel industry
conventional chemical routs could be obtained from
renewable resources by biotechnological proces-
sest™ . Thus, availability of an inexpensive carbohy-
drate raw material is essential for developing an eco-
nomical bioconversion process for the production of
a desired compound,and various kinds of starch are
considered to be ideal resources which need en-
dohydrolysis before the bioconversion process. Be-
cause of this great prospective in environment -
friendly economic development”" ™, many estab-
lished and new laboratories are progressively mov-

0l However,

ing their research focus on g-amylase
the working conditions and enzymatic characteristics
were poorly documented. It would be far more cost-
effective to screen newly obtained enzymes based on
their structure in order to have a concept on their
activity,and then to conduct detailed experiments on
selected candidates. In this regard, the prediction of
parameters in enzymatic reactions is listed on agen-

da. [ Achieved research progress] A possible way
JEAF 2014128 %21 K% 6M
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practiced by some researchers in building such an
enzyme structure-function relationship is to corre-
late enzymatic functions with amino acid properties
in the first place, which have been conducted in cel-

B but not in amylases. [ Current entry

lulases
point] The Michaelis-Menten constant Km is a very
important parameter in enzymatic reaction, which
not only represents an enzymatic function™*""*, but
also more exactly represents a quantitatively enzy-
matic function. Although the Km is important and
useful, its determination is still conduced through
experiments with respect to each particular sub-
strate. The rapid increase of newly designed en-
zymes leads the determination of Km to be far be-
hind the need. Therefore it would be considered im-
portant to find out which amino acid property would
be useful to predict the Km of «-amylase. [Critical
problem to be solved]We attempt to develop models
to quantitatively predict the Km of q-amylases with

the information about their primary structure.
1 Materials and methods

1.1 Km Data
The Km data of o - amylase from Bacillus
subtilis CN7 (Amy7C) and its 52 mutants were ob-
tained from Dr. Cheng-hua Wang*.
1.2 Predictors
The AAindex documented more than 540 ami-
no acid propertiest™, of which 531 properties were
chosen including 39 amino acid compositions, 219
physicochemical properties, 273 second structures
(Table 1). They are constants for each type of ami-
no acid,and include amino acid compositions,spatial
properties, hydrophobic properties, electronic prop-

erties, second structures and so on. On the contrary,
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another 4 properties can be classiffied as dynamic
properties, because their values for each type of ami-
no acid are different one from another in different
enzymes.

Table 2 shows the difference between constant
amino acid property QIAN880130, which is an ami-
no acid property related to second structure and de-
scribes the weights for coil at the window position
of —3 (http://www. genome. jp/aaindex/) ., and 4
amino acid properties with changing values inclu-
ding amino acid number, current composition, future
composition and distribution probability. As can be
seen,the property QIAN880130 has a constant value
(columns 4 and 5, Table 2) regardless of changed
compositions (columns 2 and 3, Table 2). This
would intuitively not reflect a different role that an
amino acid could play at different position in an en-
zyme with different neighboring amino acids. To o-
vercome this limitation, we weigh the amino acid
properties by multiplying amino acid composition
(columns 6 and 7, Table 2). The current composi-
tion (columns 8 and 9, Table 2) is calculated by the
number of a type of amino acids divided by the total
number of amino acids in an enzyme,and the future
composition (columns 10 and 11, Table 2) is calcu-
lated according to the mutating probability®’ at ht-
tp://www. nerc - nfb. ac. cn/calculation/fc. htm.
Still, the values of amino acid distribution probabili-
ty are different with different amino acid composi-
tions and each amino acid located in different posi-
tion, which are calculated according to the equation,
rl /gl Xql X Xq,! ) Xrl /Gl Xyl X
e« X 7,1 ) X n" ,where! 1is the factorial, r is the
number of a type of amino acid, ¢ is the number of

partitions with the same number of amino acids and

Table 1 Amino acid properties and their screened results

n is the number of partitions in the protein for a type
of amino acid'"', and can be available at http://
www. nerc-nfb. ac. cn/calculation/dp. htm.
1.3 Predictive model

As there may be various linear and nonlinear
relationships between the amino acid property and
Km value of g-amylase,we used a 20-1 feed forward
backpropagation neural network (Figure 1) to ac-
count for these quantitative structure-function rela-
tionships™". In this model, the first layer contained
20 neurons corresponding to 20 inputs, which could
be any piece of properties related to 20 types of ami-
no acids in a-amylase. The second layer contained
one neuron corresponding to one output that is Km
value. The transfer functions were tan-sigmoid and
linear for two layers, and log-sigmoid for output.
The training algorithm was the resilient backpropa-
gation, which was the fastest algorithm on pattern
recognition in MatLab"!. Actually, there are many
variants for such a 20-input and 1-output feedfor-
ward back-propagation neural network, therefore we
tested and compared with several more complicated
and sophisticated neural network models including
20-5-1,20-10-1,20-10-5-1,20-30-5-1,20-30-10-1, 20~
30-10-5-1 and 20-30-20-10-5-1 for 9 selected amino
acid properties.
1.4 Training and validation

Of q-amylase Amy7C and its 52 mutants, 33
served as training group to generate the neural net-
work model parameters, weights and biases, and 20
were used as validation group to validate the model
with trained weights and biases. The above approa-
ches were applied to each predictor listed in Table 1

in order to compare their predictions statistically.

Number of non-  Number of
Group Number State Related properties Webside available convergent convergent
properties properties
1 39 Constant ~ Composition http://www. genome. jp/aaindex/ 38 1
I 219  Constant  Physicochemical property  http://www. genome. jp/aaindex/ 176 43
1 273  Constant  Second structure http://www. genome. jp/aaindex/ 211 62
N 4 Dynamic Composition or distribu-  http://www. nerc-nfb. ac. cn/calculation/fc. htm 1 3
yna tion http://www. nerc-nfb. ac. cn/calculation/dp. htm
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Table 2 Comparison of constant property (QIAN880130) and dynamic properties (Amino acid Number,CC,FC and DP) in Amy7C

and its A270T mutant

Amino acid No. QIANS80130 QIANS80130 X No. CC(%) FC(%) DP
AL Amy7C  A270T  Amy7C A270T Amy7C A270T Amy7C  A270T Amy7C A270T Amy7C A270T
A 37 36 —0.19 —0.19 —7.03 —6.84 8. 62 8.39 7.28 7.23 0.0185  0.0201
R 18 18 —0.07 —0.07 —1.26 —1.26 4. 20 4. 20 7.33 7.34 0.0312  0.0312
N 39 39 0.17 0.17 6.63 6.63 9. 09 9.09 4.63 4. 64 0.0031  0.0031
D 29 29 —0.27 —0.27 —7.83 —7.83 6.76 6.76 4.78 4.77 0.0069  0.0069
C 1 1 0.42 0.42 0.42 0.42 0.23 0.23 2.78 2.78 1.0000  1.0000
E 18 18 —0.29 —0.29 —5.22 —5.22 4. 20 4. 20 4.21 4. 20 0.0389  0.0389
Q 21 21 —0.22 —0.22 —4.62 —4.62 4.90 4.90 2.71 2.71 0.0062  0.0062
G 37 37 0.17 0.17 6.29 6.29 8.62 8.62 6.73 6.71 0.0056  0.0056
H 14 14 0.17 0.17 2.38 2.38 3.26 3.26 4.21 4,21 0.0010  0.0010
I 23 23 —0.34 —0.34 —7.82 —7.82 5.36 5.36 5.14 5.16 0.0112  0.0112
L 23 23 —0.22 —0.22 —5.06 —5.06 5.36 5.36 7.00 7.00 0.0460  0.0460
K 18 18 0 0 0 0 4.20 4. 20 4.41 4,42 0.0831  0.0831
M 8 8 —0.53 —0.53 —4.24 —4.24 1. 86 1. 86 1.42 1.42 0.2243  0.2243
F 13 13 —0.31 —0.31 —4.03 —4.03 3.03 3.03 2.46 2.46 0.0463  0.0463
P 12 12 0.14 0.14 1.68 1.68 2. 80 2. 80 4.88 4.88 0.1241  0.1241
S 39 39 0.22 0.22 8.58 8.58 9.09 9.09 8.42 8.43 0.0064  0.0064
T 27 28 0.1 0.1 2.7 2.8 6.29 6.53 6.81 6.86 0.0161  0.0500
W 12 12 —0.15 —o0.15 —1.8 —1.8 2. 80 2. 80 0.69 0.69 0.0310  0.0310
Y 19 19 —0.02 —0.02 —0.38 —0.38 4.43 4,43 3.32 3.32 0.0852  0.0852
Y4 21 21 —0.33 —0.33 —6.93 —6.93 4.90 4.90 6.50 6.48 0.0053  0.0053

QIANS880130 is an amino acid property related to second structure and describes the weights for coil at the window position of —3 C(http://www.

genome. jp/aaindex/). No. s Number of amino acids; CC( %) ,Current composition of amino acids; FC( %) ,Future composition of amino acids; DP,

Distribution probability of amino acids.
1.5 Statistics

For each predictor,one hundred trainings were
conducted,and the obtained 100 sets of weights and
biases were used to predict Km 100 times, and the
results were presented as median with interquartile.
The linear regression and Wilcoxon Signed Rank
Test were used to compare predicted Km values with
recorded ones,and Kruskal-Wallis One Way Analy-
sis of Variance on Ranks was used to compare the
predicted results among groups. P <(0. 05 is consid-

ered significant.
2 Results

Among 535 amino acid properties, 109 ones can
converge during the fit,including 1 constant compo-
sition, 43 physicochemical properties, 67 second
structures and 3 dynamic properties(Table 1). Thus
these 109 properties can serve as predictors to quan-
titatively predict the Km of amylases, suggesting
that the Michaelis-Menten kinetics in enzymatic re-
action may be related to them, by which we can
build a quantitative relationship. Also, the results in
table 1 indicate that the dynamic properties give bet-

ter consquences with 3 converged out of 4 in two-

layer neural network model.

JSEAFE 201445128 H 21 A% 6 M

Inpus ARNDCEQGHI LKMFPSTWYV

Output

Fig. 1 20-1 feedforward backpropagation neural network
to model the relationship between 20 pieces of information on
primary structure of amylase

Amino acid propertees are labeled using the symbols of
20 types of amino acids its Km. Each hexagon represents a
neuron. IW{1} is the input weights, LW {2,1} is the layer
weights to the second layer from the first layer. b{1} and b{2}
are the biases related to each neuron at the first and second
layers.

Figure 2 demonstrates the predicted results for
Km values of q-amylase and its mutants obtained in
training (a) and validation (b) by 109 amino acid
properties using 20-1 feedforward backpropagation
neural network. We used four indicates to present
the results: 1) R value is the correlation coefficient
in regression between recorded and predicted Km
values, which reflects the correlation tendency of

predicted results;2) P value is obtained from Wilc-
oxon Signed Rank Test,which reflects the difference
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Figure 2 Predicted results for Km values of q-amylase and its mutants by 109 amino acid properties using 20-1 feedforward

backpropagation neural network

(a) Training; (b) Validation; R , Correlation coefficient in regression between recorded and predicted Km values; P,P value

from Wilcoxon Signed Rank Test; No difference,Percentage of amylase number to be predicted correctly; CV, Coefficient of varia-

tion.

between recorded and predicted Km values; 3) No
defference is the percentage of amylases whose Km
value is correctly predicted;4) CV is the coefficient
of variation, which reflects the degree of variation.
As can be seen in Figure 2, different amino acid

properties give different predicted results. Very
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good results were obtained from training,for exam-
ple.the range is 0. 325~0. 988 for R value,0. 133~
1. 00 for P value,18.18% ~96.97% for the correct-
ly predicted amylases and 0. 34 % ~38. 35% for the
CV. In comparison, the validation results revealed

not so good,especially for the R value.
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Based on the above results, we further test the
effect of different neural network models on the pre-
diction of amylase Km . Figures 3 and 4 show two
types of results: (i) how many layers and neurons
work best with nine amino acid properties;and (ii)
which amino acid property works best with eight
neural network models. As can be seen from Figure
3, the increase in complexity of predictive models in-
creased the R value ( P <C0.001) but did not affect
the P value ( P = 0. 302) for the training. On the
contrary, the increase in complexity of predictive
models did not affect the R value ( P =0. 104) but
decreased the P value ( P <C0. 001) for the valida-
tion. Figure 4 displays the comporison of predicted
results from nine amino acid properties selected, of
which significantly statistical diference was found in
P values of the training ( P =0. 046) but not in R
values of both training and validation ( P =0. 834
and P =0. 053) as well as P values in validation ( P
=0.245).
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Figure 3  Predicted results for Km values of ¢-amylase
and its mutants by eight different neural network models

(a) Training; (b) Validation; R , Correlation coefficient in
regression between recorded and predicted Km values; P,P

value from Wilcoxon Signed Rank Test.
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Figure 4 Predicted results for Km values of ¢-amylase

and its mutants by nine animo acid properties in multi-layer
neural network models

(a) Training; (b) Validation; R , Correlation coefficient in
regression between recorded and predicted km values; P, P val-

ue from Wilcoxon Signed Rank Test.
3 Discussion

Currently, intriguring interests are focusing on
thermostability and activity of a Ca-independent -
amylase from Bacillus subtilis CN7"*, whose mu-
tants have been engineered by combinatorial coe-
volving-site saturation mutagenesis'**'. The feedfor-
ward backpropagation neural network is powerful
model for modeling, by which 535 amino acid prop-
erties were used to quantitatively predict Km value
of a-amylase Amy7C and its 52 mutants. The results
show that different predictors give different results
and that 109 properties screened can work as predic-
tor. In general, the dynamic properties of amino
acids give better results because three out of four
can converge in the predictive models. This is rea-
sonable for they are subject to the length of en-
zyme, position of each amino acid, and represent a
dynamic aspect of amino acids in an enzyme-*,
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However, the best predicted results came from the
amino acid properties with physicochemical property
and second structure,indicating that they have more
impacts on enzymatic reaction. Moreover,our results
show that the increase in complexity of predictive
models does not give too much improvement, sug-
gesting that the simpler 20-1 and 20-5-1 models
should be the first choice in future to quantitatively
predict a-amylase Km based on amino acid proper-
ties.

For an experimentalist, it would be easier to
measure Km value than to predict. However,it is on-
ly the model that can provide the basis for generali-
zation. Moreover, the model would provide the basis
for simulation of catalytic reaction using computer.
Actually, the prediction of optimal working condi-
tion for enzymes is an understudied area, thus it is
important to develop methods along this line of
studies. Experimentally and practically, it is impor-
tant to develop methods to use as simple informa-
tion as possible to predict the optimal working con-
dition for enzymes. Unlike the modeling in bioinfor-
matics where a considerable data are available, the
modeling with parameters of enzymatic reactions al-
ways suffers from shortage of data. In fact, the pre-
diction of parameters in enzymatic reactions is an
under-studied field mainly due to the lack of data,
which should be weighed by the fact that small
dataset can reduce the chance that a small statistical
difference can appear significant with large dataset.
However, such studies should be conducted to catch
up with the fast development in biotechnology and
bio- fuel industry. Nevertheless, more studies are
needed in order to better predict the optimal work-

ing conditions in different enzymes.
4 Conclusion

The Michaelis-Menten constant Km of a-amyl-
ase can be quantitatively predicted by some amino
acid properties through neural network, which paves
the way for predicting parameters in enzymatic reac-
tions according to the information of primary struc-
ture of enzyme,like the amino acid properties.

Acknowledgements; The authors thank Dr.
Cheng-hua Wang for providing the Km data of g-am-
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