广西科学 Guangxi Sciences 2015,22(2):121~124

网络优先数字出版时间:2015-01-26

网络优先数字出版地址:http://www.cnki.net/kcms/detail/45.1206.G3.20150126.1549.015.html

结晶紫表面增强拉曼与时间关系研究* Study on the Relationship between Surface-enhanced Raman Spectroscopy of Crystal Violet and Time

张枝芝^{1,2},林漫漫^{2,3},张泽森¹,徐 斌^{1,2},姚辉璐^{2**},刘军贤¹

ZHANG Zhi-zhi^{1,2}, LIN Man-man^{2,3}, ZHANG Ze-sen¹, XU Bin^{1,2}, YAO Hui-lu², LIU Jun-xian¹

(1. 广西师范大学物理科学与技术学院,广西桂林 541004;2. 广西科学院生物物理实验室,广西 南宁 530007;3. 武汉大学化学与分子科学学院,湖北武汉 430072)

(1. College of Physics and Technology, Guangxi Normal University, Guilin, Guangxi, 541004, China; 2. Laboratory of Biophysics, Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China; 3. College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China)

摘要:【目的】研究银包金纳米颗粒(Ag@AuNP)对结晶紫信号的增强效果与时间的关系。【方法】用新型纳米材料银包金纳米颗粒作为拉曼增强基底,采用 785 nm 激光激发结晶紫表面增强拉曼光谱,统计光谱特征峰强度变化趋势。【结果】结晶紫 725 cm⁻¹,801 cm⁻¹,914 cm⁻¹,1177 cm⁻¹,1392 cm⁻¹,1588 cm⁻¹等特征峰强度在0~30 min 内随时间的延长而逐渐升高,达到一个平台后随时间(30~36 min)的增加基本保持不变。【结论】最优最快的结晶紫表面增强光谱的测定时间约为 30 min,该结论丰富了表面增强拉曼的研究成果。

关键词:结晶紫 银包金纳米粒子 表面增强拉曼光谱

中图分类号:O657.37 文献标识码:A 文章编号:1005-9164(2015)02-0121-04

Abstract: **[Objective]** The aim of this study is to analyze the relationship between crystal violet signal enhancement effect of gold silver core-shell nanoparticles (Ag@AuNP) and time. **[Methods]** The new nanomaterial Ag@AuNP is used as Raman enhancement substrate, and surface-enhanced Raman spectroscopy of crystal violet is induced by using 785nm laser excitation. The changes in characteristic peak intensity of Raman spectra are statistically analyzed. **[Results]** The intensity of crystal violet peaks at 725 cm⁻¹,801 cm⁻¹,914 cm⁻¹,1177 cm⁻¹, 1392 cm⁻¹ and 1588 cm⁻¹ increases over time within $0 \sim 30$ min, and does not change with time after reaching a plateau ($30 \sim 36$ min). **[Conclusion]** The best fastest measurement time to detect surface-enhanced raman spectrum of crystal violet is 30 min, which greatly improves the period associ-

修回日期:2014-12-25

ated with surface-enhanced Raman studies.

Key words: crystal violet, gold silver core-shell nanoparticles (Ag @ AuNP), surface-enhanced Raman spectroscopy(SERS) DOI:10.13656/j.cnki.gxkx.20150126.015

0 引言

【研究意义】表面增强拉曼散射(SERS)效应是指 吸附在特殊制备金属纳米材料表面的分子其拉曼散

收稿日期:2014-12-10

作者简介:张枝芝(1988-),女,硕士研究生,主要从事表面增强在 活体细胞的应用及拉曼数据分析方面的研究。

^{*} 广西自然科学基金项目(No. 2012GXNSFFA060008, No. 2014GXNSFAA118362)资助。

^{* *} 通讯作者:姚辉璐(1972-),男,硕士生导师,主要从事仪器开 发及光谱分析等研究, E-mail: huiluy@gmail.com。

射信号比普通拉曼散射信号大大增强的现象。近年 来,单一的金属纳米材料已经不能满足人们的研究需 要,银包金纳米颗粒成分特殊,既具备银纳米粒子增 强因子高的性质又具备金纳米粒子生物相容性好、分 散性好的性质,而这种复合性质又能区别单一金、银 纳米粒子的性质印。结晶紫是一种在细胞学、组织学 和细菌学等方面应用极广的碱性染料,是阳离子型染 料分子,能很好的吸附在表面负电性的银包金纳米颗 粒上,已被广泛应用于 SERS 活体研究。因此,对结 晶紫表面增强拉曼散射的研究具有实际意义。【前人 研究进展】Hidebrandt等^[2]的研究表明,结晶紫 SERS 光谱的强度与其浓度之间具有良好的线性关 系,且当结晶紫浓度为 $10^{-5} \sim 10^{-6} \mod/L$ 时具有最 佳增强效果。Sheng 等^[3]曾系统地研究结晶紫 SERS 光谱随激发波长变化的情况。陈建等[4]利用结晶紫 的普通拉曼光谱和表面增强拉曼光谱研究其表面感 应共振增强机制。洪亮等這研究结晶紫表面增强共 振拉曼光谱和银胶浓度的关系,发现适当浓度的银胶 才能获得最强的 SERRS 的信号。【本研究切入点】 多数文献显示结晶紫和纳米粒子需过夜培养 12 h 后 才用于测定[3,4,6],文献[2]表示至少3h后才能测定, 文献[7]表示至少 5 min 后才能测定。但是这些文献 均未涉及结晶紫表面增强拉曼光谱强度与时间关系 的研究。【拟解决的关键问题】研究结晶紫的实时表 面增强拉曼光谱,通过分析光谱特征峰强度随时间的 变化得到最优的表面增强拉曼光谱信号收集时间。

1 材料与方法

1.1 实验装置与光谱收集

所用的激光拉曼系统如文献[8]所述,把一束波 长为 780 nm 的二极管激光(DL740-201S-Sanyo Laser Diode) 经 过 滤 波 后 导 入 倒 置 生 物 显 微 镜 (TE2000-U, Nikon,日本)。激光束经过油浸物镜 后,聚焦在结晶紫样品上。结晶紫散射的拉曼光聚焦 到光谱仪(Spectra2 Pro2300i,Acton,USA)的入射狭 缝,再通过电荷耦合器件 CCD(PIXIS400BR,Princeton Instruments)收集拉曼信号,并传输到计算机形 成拉曼光谱图。其中 CCD 会自动冷却到-70°C。

样品处理:1×10⁻⁶ mol/L 的结晶紫分别和纳米 金、银包金颗粒过夜培养 12 h 后收集光谱;同浓度的 结晶紫和银包金颗粒混合后立刻收集光谱,直到收集 的光谱强度保持不变并且和培养 12 h 后收集的光谱 强度基本一样后停止收集(0~36 min)。

光谱收集都是每间隔 10 s 收集一个,光谱积分 时间为 5 s,功率为 25 mW,激光光斑大小为 2 μm。 122 光谱数据的处理在 Origin9.0 软件中进行,包括基线 校正和求平均。峰强度抽取由自编程序处理。

1.2 实验材料与纳米粒子制备

结晶紫、柠檬酸钠、氯金酸、硝酸银、抗坏血酸(均 购买于 Sigma 公司,分析纯),王水(盐酸:硝酸= 3:1制备)。实验用水均为超纯水(OKP-S010型,上 海涞科实业发展有限公司)。

银包金纳米粒子合成^[1]:先采用柠檬酸钠还原法 制备纳米金(AuNP),进而以AuNP为种子进一步制 备金核银壳纳米粒子。三口烧瓶、冷凝管、存放纳米 金的瓶子均用王水洗净;先量取 50 mL 的超纯水放 入烧瓶中,其中烧瓶里有配套的磁子,然后加入 500 μ L 1%的氯金酸溶液,边加热边搅拌;等烧瓶里的溶 液沸腾后立刻加入 900 μ L 的 1.12% 柠檬酸钠,继续 搅拌 20 min 之后将烧瓶从水浴中拿出来,冷却到室 温,转移至干净的瓶子,4℃冰箱保存。取 10 mL 上 述制取的纳米金溶液,放入干净烧杯中,边搅拌边依 次加入 400 μ L 的 0.14% 柠檬酸钠,100 μ L 的 1. 76% 抗坏血酸,最后缓慢逐滴加入 200 μ L 的 1. 69% 硝酸银,室温避光继续搅拌 15 min,4℃冰箱保存待 用。

2 结果与分析

2.1 紫外可见吸收光谱(UV-Vis)和电镜(TEM)

由图 1 可以看出,Ag@AuNP 新鲜制备与放置 过夜的紫外可见吸收光谱基本重合,特征吸收峰为 497 nm、383 nm,表明 Ag@AuNP 在过夜放置这段 时间内是稳定的。由图 1(b)看出 Ag@AuNP 的粒 径约为 30 nm。

2.2 结晶紫表面增强拉曼光谱分析

2.2.1 结晶紫过夜培养 12 h 后的结果

结晶紫分别和纳米金、银包金过夜培养 12 h 后 收集表面增强拉曼光谱,用自编程序提取 803 cm⁻¹, 1177 cm⁻¹,1390 cm⁻¹等光谱特征峰的强度求平均, 统计结果见图 2。可以看出,银包金培养的结晶紫拉 曼峰的强度分别是纳米金的 20,40,30 倍,说明银包 金纳米颗粒比单纯的纳米金颗粒更能增强结晶紫的 拉曼信号。

2.2.2 结晶紫在 0~36 min 内培养的结果

结晶紫与银包金颗粒混合后立刻收集拉曼光谱, 直到收集到的光谱强度与培养 12 h 收集到的光谱 (图 3b)强度基本一样且稳定不变后停止收集。所收 集到的拉曼光谱如图 3a。由图 3a 可以看到,结晶紫 拉曼光谱强度随培养时间的延长有明显的升高趋势。

Guangxi Sciences, Vol. 22 No. 2, April 2015

图 1 纳米粒子(NPs)的紫外可见吸收光谱(a)与 Ag@ AuNP 溶液电镜照(b)

Fig. 1 UV-Vis spectra and TEM images of NPs

—— :新鲜制备的 Ag@ AuNP, -·· 过夜放置的 Ag@ AuNP, --- 新鲜制备的 AuNP.

(a) The UV-Vis spectra of fresh Ag@ AuNP (----), Ag @ AuNP storaged for 12 h overnight at room temperature (----) and fresh AuNP(-----);(b) The TEM image of Ag @ AuNP and the illustration at the lower right corner is Ag @ AuNP solution.

图 2 结晶紫拉曼光谱单个特征峰强度

Fig. 2 Intensity histogram of single Raman spectrum characteristic peak of crystal violet

从图 3a 的拉曼光谱中提取出 725 cm⁻¹,801 cm⁻¹,914 cm⁻¹,1177 cm⁻¹,1392 cm⁻¹,1588 cm⁻¹ 等较具代表性的特征峰的强度做时间趋势(图 4),结 果显示,结晶紫上述特征峰强度在 0~30 min 内逐渐升高,在 $30\sim36$ min 内渐渐趋于稳定,到达一 个平台,即结晶紫和银包金纳米颗粒培养约 30 min 后进一步测定其光谱,强度与过夜培养的无差异。从 表 1 可以看出,各特征峰增长比值高的是 1177 cm⁻¹ 和 1392 cm⁻¹特征峰,分别为 12.99 和 14.86;较低的 是 801 cm⁻¹ 和 1588 cm⁻¹ 特征峰,分别为 7.53 和 8.15。

图 3 结晶紫表面增强拉曼光谱

Fig. 3 Surface enhanced Raman spectroscopies of Crystal violet

表 1 各个特征峰的变化 (0~30 min)

T.LL 1	Cl. C	41	.1		10 20	
Table 1	Changes of	tne	characteristic	peaks	$0 \sim 30$	min)

波数 Wave- number (cm ⁻¹)	初始强度 Beginning of intensity (a. u.)	末强度 Last of intensity (a. u.)	增长量 Quantity of increase (a.u.)	增长比值 The growth ratio
725	2110	19693	17583	8.333175
801	2153	18370	16217	7.532281
914	1662	21599	19937	11.99579
1177	2300	32186	29886	12.99391
1392	1541	24438	22897	14.85853
1588	2448	22400	19952	8.150327

注:增长比值=增长量/初始强度

Note: The growth ratio=quantity of increase/beginning of intensity

图 4 结相系的表面增强拉曼尤语符征峰强度在 0~~. min 内的变化趋势

Fig. 4 Intensity trend diagram of surface-enhanced Raman spectral characteristic peak of crystal violet in 0~36 min

3 结论

结晶紫常被用做表面增强拉曼实验的信号分子, 但是结晶紫和纳米颗粒培养时间对实验结果的影响 各文献意见不一。为得到培养时间短且有最优拉曼 强度的测定时间,本文研究结晶紫的表面增强拉曼光 谱强度随时间的变化,分析光谱增强与时间关系,以 过夜培养的结晶紫表面增强拉曼光谱强度作为参考, 发现结晶紫峰强度随时间上升到一定高度后基本保 持不变,最终得到最优的测定结晶紫表面增强拉曼光 谱的时间约为 30 min。

参考文献:

[1] Shen A G, Chen L F, Xie W, et al. Triplex Au-Ag-C

core-shell nanoparticles as a novel Raman label[J]. Adv Funct Mater,2010,20(6):969-975.

- [2] Hidebrandt P.Stoekburger M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver[J]. J Phys Chem, 1984, 88(24):5935-5944.
- [3] Sheng R S, Zhu L, Morris M D. Sedimentation classification of silver colloids for surface-enhanced Raman scattering[J]. Anal Chem, 1986, 58(6):1116-1119.
- [4] 陈建,张卫红,张卓良,等.结晶紫的表面增强拉曼光谱
 研究[J].中山大学学报:自然科学版,1995,34(1):114-117.

Chen J,Zhang W H,Zhang Z L, et al. Surface-enhanced Raman scattering spectra of crystal violet[J]. Acta Scientiarum Naturalum Universitais Sunyatseni, 1995, 34 (1):114-117.

- [5] 洪亮,黄振荣,郝少康.结晶紫的表面增强共振拉曼光谱 和银胶浓度的关系[J].光散射学报,2006,18(1):21-25.
 Hong L, Wong C W, Hark S K. Relationship of the SERRS of CV and the concentration of Ag colloids[J].
 Chinese Journal of Light Scattering,2006,18(1):21-25.
- [6] Katrin K, Harald K, Janina K. Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregates-from single-molecule Raman spectroscopy to ultrasensitive probing in live cells[J]. ACC Chem, 2006, 39(7):443-450.
- [7] 张浩然,满石清.基于 Au/SiO₂纳米粒子的结晶紫表面 增强拉曼特性研究[J].分析化学,2011,39(6):821-826.

Zhang H R, Man S Q. Surface-enhanced Raman scattering activities of crystal violet based on Au/SiO₂[J]. Chinese J Anal Chem, 2011, 39(6):821-826.

 [8] Yao H L, Tao Z H, Ai M, et al. Raman spectroscopic analysis of apoptosis of single human gastric cancer cells
 [J]. Vibrational Spectroscopy, 2009, 50(2):193-197.

(责任编辑:尹 闯)