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Robust Resilient Guaranteed Cost Control for Singular
Impulsive Switched Systems with Time-varying Delay "
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Abstract: This paper focuses on the problem of robust resilient guaranteed cost control for a
class of singular impulsive switched systems with time-varying delay. Based on the multiple
Lyapunov functional technique, some sufficient criteria, ensuring the regularity, causality, and
asymptotic stability,are obtained initially for the nominal and unforced systems. Then the resil-
ient controller is designed such that the corresponding closed-loop system,for all admissible un-
certainties,is regular,causal and asymptotically stable, and the cost function does not exceed a
cost upper bound. Further,a minimization approach of the largest singular value of matrices and
a convex optimization method are introduced to seek the optimal robust resilient guaranteed
cost controller. All the conditions are cast into the form of linear matrix inequalities (LMIs)
through ingenious processing. Finally,two examples are presented to illustrate the less conser-
vativeness and the effectiveness of the proposed results.
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0 Introduction

Switched systems have attracted considerable

U7 which include a series

attention in recent decades
of continuous-time or discrete-time subsystems and
a switching rule that orchestrates the switching be-

tween subsystems. They can be found in various
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real- world systems such as transportation sys-

[8-9] Lol communication

[13]

tems , electric power systems

[1112] . However,

networks »and chemical processes
singular phenomena often exist in practical proces-
ses modeled by switching systems such as robotics,
economics, chemistry and power systems. We call
this kind of systems as singular switched systems.
The past decades have witnessed considerable re-
synthesis of singular

search on analysis and

switched systems"* "’

. In addition, impulses often
take place in various applications modeled by switc-
hing systems,which makes it more intricate to ana-
lyze the property of impulsive switched systems.
Recently, some theoretical results on impulsive
switched systems are reported in literatures, respec-
tivelyH®2H,

In actually physical processes, due to some
physical restriction such as resistance errors, A/D or
D/A conversion, finite word length in digital sys-
tems and rounding off errors in numerical computa-
tion, it is impossible to implement controller pre-
cisely,and it is important to take the controller gain
perturbations into account during the designing
process of the controller. On the other hand, the rel-
atively small fluctuation of controller parameters
may lead to the performance degradation or even in-
stability. The two aspects above inspire us to design
a controller that should be able to tolerate some lev-
els of controller parameter perturbations. This kind
of controllers are usually called as “resilient control-
lers”. Therefore,it is extremely imperative to design
a resilient controller, and at the same time, some
techniques and approaches solving this problem have
been proposed. In [ 22 ], the problem of non-fragile
hybrid guaranteed cost control is addressed for a
class of uncertain switched linear systems. An ob-
server-based resilient controller is designed in [ 23]
for singular time-delay systems. Up to now.,just lit-
tle attention has been paid to design a resilient guar-
anteed cost controller for singular impulsive
switched systems with time- varying delay, which
stimulates the authors’ research interests.

Here, we mainly study the robust resilient
guaranteed cost control problem for a class of singu-
lar impulsive switched systems with time- varying
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delay. The outstanding contributions lie in several
aspects; Firstly, we consider the uncertainty, im-
pulse, singularity and time delay in switched sys-
tems at the same time, which throw out the greater
challenge for the authors; Secondly, for the singular
impulsive switched systems with time-varying de-
lay,the derived conclusions can apply to various sys-
tems such as singular switched systems, impulsive
switched systems, and singular impulsive systems,
which fully demonstrates the less conservativeness
and the broader applicability; Thirdly, uncertainties
exist not only in the system structure but also in the
resilient controller, which make it more difficult to
simplify and solve inequalities; Fourthly, we intro-
duce a minimization approach of the largest singular
value of matrices and a convex optimization method
in this paper to seek the optimal robust resilient
guaranteed cost controller;Finally,all the conditions
are cast into linear matrix inequalities (LMIs), and
two examples are provided to illustrate the effec-
tiveness of the proposed results.

Notations Throughout this paper, T denotes
the transpose. R" represents the n -dimensional Eu-
clidean space. Z* is a positive integer set, C stands
for complex domain. Matrix P > 0(P = 0) means
that P is positive definite (positive semi-definite),
and I is identity matrix with appropriate dimen-
sions. * stands for the symmetric part in a block

symmetric matrix.
1 Problem formulation and preliminaries

Consider the following singular impulsive
switched system with time-varying delay

S Ex () = Ay +AA))x() + (A +
AA ., o)x(t—1()) + By ttory () st & 14 s

Ax (1) =(Coy +AC,p)x() st =1 »

() =¢()t € [—1,.0],
where 2(z) € R" is the state, 6(¢):[0, + o) > M=
{1,2,+.m).m € Z" is a piecewise constant switc-
hing signal to be designed which usually depends on
time ¢ or state x(¢) ,and6(z) =i implies that thei -th
subsystem is activated. u,, (1) € R is the control
input. 7(#) is the time-varying delay satisfying 0 <C
(1) <7z, and 0 <7 (1) < p<<1.¢() is a differentia-
A LA, .B,,C;si € M, are
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known real constant matrices of appropriate dimen-
sions. E € R™ is a singular matrix with 0 <<
rank(E) =r < n.AA,,AA.,,AC,.i € M are un-
known real norm - bounded matrices representing
time-varying parameter uncertainties and satisfying
AA, =N,F, (DD, . Fl.(OF,;(t) < I, @b
AA.., =N,F,,()Dy; , F3,(DOF, (1) < T, (2)
AC, =N F;;(DOD; . FL(OF; (1) < I, 3
where N, s N, s N5, s Dy; s D,; s Ds; are known constant
matrices of appropriate dimensions. F;(#),F, (2),
F;;(¢) are unknown matrix functions,and ¢, is an im-
pulsive switching point satisfying 0 =¢, <t, <t, <
o <ty < sk € {01,200 b 2 () = a() =
limx(t, —h) yx(ty;) =limax(t, +h) . Ax(1,) =

70 70
2t —x () =2y —x ().
Associated with system X, , the cost function

is given by

oo
]:J 2T () Sx (1) + uly (DRu,, (Odt,  (4)

0
where S and R are positive definite weighted matri-
ces.

For system 3, » a resilient controller

Uy (1) = (K,p TAK ,»)x (D), (5)
is considered,where K,;,i € M is a controller gain to
be designed, and AK;,i € M represents a additive
controller gain variation which has the following
form

AK,=NyF(ODs  Fi(DOF3 () < I.i € M,

(6)
where N; and D;; are known real constant matrices,
and F; (¢) describes the uncertainty of the controller
gain.

Definition 1”7 Consider the pair (E. A, ).

1. For a given: € M ,the pair (E,A;) is said to
be regular if det (sE —A,) #% 0,5 € C.

2. For a giveni € M ,the pair (E,A;) is said to
be causal if it is regular and deg (det (GE — A;)) =
rank (E).

3. The pair (E,A,, ) is said to be regular and
causal if every pair (E,A;) is regular and causal,
i € M.

Definition 27 The system =, withA A, =0,
AA., =0,u;(t) =0,i € Mis said to be regular and
causal if the pair (E,A,, ) is regular and causal.

Remark 1

356

The existence and uniqueness of the

solutions of systems X, with AA, =0,AA,.;, =0,
u; (t) =0 for eachi € M, can be ensured by regulari-
ty and causality.

Definition 3 For system X, , if there exist a
switching signal 6(z), a state feedback controller
Uy, (t) in the form of (5),and a positive scalar J~
such that for all admissible uncertainties, the corre-
sponding closed-loop system is regular, causal, as-
ymptotically stable, and the value of the cost func-
tion (4) satisfies J << J*, then J " is said to be a
guaranteed cost and the controller (5) is said to be a
robust resilient guaranteed cost controller. If J . is
the minimal upper bound of the guaranteed cost,
then J ., is known as an optimal guaranteed cost and
the corresponding controller u,,, () is called an opti-
mal robust resilient guaranteed cost controller.

The main object of this paper is to construct a
switching signal, design a robust resilient guaran-
teed cost controller and give an upper bound of the
cost function for systems X, .

Let Y =Y",H.E and F be real

matrices of appropriate dimensions with FTF < 1.

Lemma 12"

The following statements are equivalent

a. Y+ HFE +E'F'H' <o,

b. there exists a scalar ¢ > 0, satisfying Y +
HH"+E'E <o.

(5] For matrix Q =0, if there is a ze-

Lemma 2
ro element ¢; on the main diagonal line of Q, then

the column and row which g; lies on are both zero.
2 Main results

2.1 Stability analysis
In this section, we initially establish stability
conditions for the following system X,
So Ex () =A,2(0) + AL, x(t— (),
L7 s
Ax () =Copx(t) st =1,
() =¢(),t € [—1,,0].
Theorem 1 Consider system X, . If, for any
i € M, there exist constants 8; = 0(; € M), matri-
cesQ; >0,X, =>0,Z, > 0,P;,Y; such that
PE=E"Pl >0, P)
rn c,ATZA. —Y,+PA_
I, = - < 0,
* T, ALZA. — 0 —pwQ,
()
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(I+CH"P.E(I+C,)—P,E<0,i#j.j € M,
(9
X Y.
=0, (10)
[* (1/¢)ETZ,E]
where I, =P,A, +A/PT +Q, 4+, X, +Y, +Y! +
0, ATZA, + /%15,] (P, — P)E.
then the system 3, is regular,causal and asymptot-
ically stable under a state-dependent switching sig-
nal
o(t) =arg min {z" (D) P,Ex(t),i € M}. (11)

Proof  Without loss of generality, let E =

I. 0

{ O} Define the following multiple Lyapunov
*

functional

Voo () =2 ()P, Ex (1) +

ﬁ 2T () Qo 2 (s)ds +
t—7(1)

f J 2T (OE" Zy, Ex (@) dadp.

—t(1) 3
and design the switching signal (11).
Whent € (#;.t,., ] »suppose that the i -th sub-

system is activated. Then one obtains

t

V.(t) =x" () P,Ex(t) +J 2" () Qup x(s)

t—7(1)

0 t
derJ J 2" () E" Z 0, Ex (@) dadp. 12)
t

—z() 8

From (11) and the condition 8; = 0,we get

m

SR, (P,—P)HE =0. (13)
j=1
In the following, we firstly prove that system

S is regular and causal.

Corresponding to the blocks of matrix E, one

denotes
Xy X Y, Y,
X, = Y, = ’
* X Yy Y
. Zin Zas
Z,’ - ’ (14)
* Zas

Pil P[Z All A[Z
P,‘ — 9A,' - .
I)[S I)14 f§i3 /%14

Substituting (14) into (10),we obtain

Xy X Y, Y
* X Y Y, =0,
* * (1 7#>Z"” O
* * * 0

which implies from Lemma 2 that

FEASE 201648 A H235% 4

_Yzl O
1Y O

From (7),there holds
[P, P,
From (8),we have

PA, +A/P! +Q + . X, +Y, +Y! +

P =

i

(16)

R ATZA, + 38,(P,— POE <0, an
Bearing (13)] and Q; > 0,X;, < 0,Z, >0,7,, > 0in
mind,one gets from (17)

PA, +API+Y, +Y! <0. (18
a o Ap

Substituting (15),(16), A, = [ :| into (18)
i3 i

implies P;; A, + A}, P}, <<0. Hence, A, is invertible,

This shows that system =, is regular and causal™.

Subsequently,we will focus on our attention to

asymptotical stability analysis.

Due to the fact x(t) — 2(t — (1)) =
J/ x(a)da, one can rewrite 3¢, as
t—(1)

2/(2):Ei'(t) - (A, _'_ Ar,)x(t) -

Ar,-J[ () dast % 1,
t—7(1)

Ax (1) =Copax()st =1

() =¢).t € [—1,,0].
Calculating the derivative of V;(¢) in form of (12) a-
long with the solution of system X', ,one has

V() = 22" ()P, [(A, + A.Dx() — A,
JZ x(a)da] + 2" DOQuxr (1) — (1 — ';'(t))xT(t —
—7(1)
tNQx(t — () + W2 WE'ZEx () —

J’ PTWE ZEr(da —  ( — ()
t—(t)

J' T (WEZE () da. (19)

t—7(1)
From (10),it is easy to derive
X, Y,
) =0,
*x (1—7)HE"ZE

which implies

—zx'f<t>P,A,iJ/ ) da <

t—(t)
J/ (O T X
t—(1) 1(a) X

Y: —PA (xm]
. . da =
A—c@)HE"ZE ) \x(a)

(D2 " (O Xx () +227 () (Y, — P,A.,)
C AT(WE'ZEr (o) da —

t—7(1)

J’ f<a>da+J
t—7(1)
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‘;'(t) Jl 2" (@)E"Z.Ex (a)da. (20)

—(1)
Substituting (20) into (19) gives
V.0 < (1‘(t) )1
x(t— (1))
12 TmA;FZ[Ari —Y,; +P,'Am‘
[* r,,IATT,Z,-Ar,-(l,u)Q,-]

( x (1) j
, Q2D
x(t—1(1))

whereI', =PA, + AP/ +Q 4+, X, +Y, + Y +
,ATZ.A; . From (8) and (13), we conclude that
V() <o.

In order to ensure the asymptotic stability of
system X, ,we shall verify that V,,, () do not in-
crease along with the switching instants. It is sup-
posed that system X, switches to i -th subsystem
from j -th subsystem atz=¢, . That is to say, 6(¢) =
ot € (tyy sty ] sando(2) =it € (151111 ] . Substitu-
tingt =1, into Ax (1) =C,,,x(t) ,we have x(z}) —
x(ty) = Cjx (1) , that is, 2 (¢{) = (I + CHx(z,) .
This equation,together with (12),yields

V(&) =", )P,Ex () +

0 0 0o
J[} } xT(s)Q(,(,\.)I(s)ds+J )J[} 2T (a) .

L)) —c(ii) i)+
ETZM)EJ'C(a)dadB:IT(tk)(I—FC]-)TPiE(I+

2T () Qo x(s)ds +

t,—(t,)

CHa(e) +j

J j T (@WE"Z, Er () dadB.
() J 4B
V,(l/\») :l'T(fk)PjEl'(tk) +

Jrh 2T (HQux(s)ds +

=t

0 [ . .
J J‘ IT(Q)ETZJ(Q)EJC(O')dadBV

et 4B

Vi) =V, () =2 [U+CH"P.EU +
C)) — P,E]Jx(z).

By (9), there clearly holds V;(¢;) — V,;(z,) << 0.
Hence,we conclude that system X, is asymptotical-
ly stable. This completes the proof.

Remark 2 For the nominal and unforced form
of the singular impulsive switched system with
time-varying delay, this theorem designs the state-
dependent switching signal, under which the given
system is regular, causal, and asymptotically stable
based on the multiple Lyapunov functional tech-
nique. Further,it should be observed that this result
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can also apply to various systems such as singular
switched systems, impulsive switched systems and
singular impulsive systems. For impulsive switched
systems and singular impulsive systems,the follow-
ing corollaries state the related conclusions, which
can fully demonstrate the universality and practica-
bility of the theorem.

Corollary 1 Consider the following impulsive
switched system with time delay

S i) =Aup () F ALt —h) ot F 1y

Ax(t) =C,nx(t) st =1t

() =¢(t),t € [—h,0].
If.for any i € M ,there exist constants §; = 0(j €
M) .matrices Q; > 0,P; > 0 such that

PA,+ATP,+Q + SB8,(P,—P) PA.,
=1 <0, (22)

* — Qi

(U+CHTP.UU+C)H—P, < 0,i#j.j €M,
then the system X, is regular, causal and asymp-
totically stable under a state-dependent switching
signal 6(¢) =arg min {z" (O P.x () ,i € M}.

Remark 3 Theorem 2 in paper [ 18] requires
that the energy function decreases on the whole
space R", that is, every subsystem is stable on the
whole space R" , while this corollary just requires
that the energy function decreases on the corre-
sponding area (2; ,» which can stand out the merit of
the result proposed in the paper.

Corollary 2 Consider the following singular
time-varying delay system

S i Ex (1) =Ax (1) + Ax (t — z(2)

() =¢W)st € [—1,,0].
If there exist matricesQ>0,X>0,Z>0,PandY
such that

PE=E"PT >0,

r ,A"ZA.—Y 4+ PA,.
L t ATZA, — (1 mQ} o

X Y
=0,

x  (1—wE"ZE
with'=PA+A"P"+Q+¢, X+Y+Y" "+, ATZA,
then systems X”,, is regular, causal and asymptoti-
cally stable.

Remark 4 Lemma 2 in literature [ 23] studies
the constant time delay while this corollary presents

the corresponding results for the time-varying de-
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lay.

Corollary 3  Consider system X, . If, for any
i €M ,there exist constants 8; << 0(j € M) , matri-
cesQ, >0,X,>0,7Z,>0,P,,Y, satisfying (7),(8),
(9),(10) ,then system X, is regular,causal and as-
ymptotically stable under a switching signal

o(t) =arg max {x' (DP.Ex(),i € M}. (23)

Remark 5 When 8; << 0,this corollary designs
a new state-dependent switching signal (23), which
differs from Theorem 1. In a word, this corollary,
together with Theorem 1, shows two different ca-
ses.

2.2 Performance analysis

Based on Theorem 1,we are now in the position
to provide the sufficient conditions on the existence
of a robust resilient guaranteed cost controller for
system X, .

Theroem 2 Consider system X(;, with the cost
function (4). If,for i € M ,there exist scalars §; =
0(;j € M) ,matrices Q; > 0,X, = 0,Z; > 0,P,,Y,
satisfying (7),(10) and

r, —
oy o (Aei FAADTZi(AL +AA) — Y +Pi(A; +AAD
I: * T (At FAA DY Zi(A +AA D) — (0 — @ :|
<0, 24)

(I+C,+ACH'"PEUI+C,+AC,) — P,E <
0.i7j.j € M, (25)
where

le :Pi(Aki +AAki) + (Aki +AAM)TP,‘T +
Qi + T,,,X, +Y,’ +Y1T + T,,,(AM +AA/«1)TZI'(A/“‘ +
AA ) +S+ (K, +AK)'TR(K; +AK;) +

m

jglﬁ,-,- (P; —P)E,

Ay =A +BK,,AA,, =AA, +BAK,,
and a state-dependent switching signal (11), then
controller (5) is a robust resilient guaranteed cost
controller for system X, with the performance up-

per bound

0

J =¢"(0) Py E$(0) +J >¢T(«\‘)Qa<.\->s{>(5) .

—(0

ds + J Joés“‘ (DE"Z,, E¢ () dadp.

—(0) J g
Proof Whent € (¢t | sassume that the i -
th subsystem is activated. Applying the controller
(5) to systems X(;, results in the following closed-
loop system

FEASE 201648 A H235% 4

S Er () = (A + AA D) + (A, +
AA Dx@— (D)t F 1y

Az (@) =(C; +AC) () st =1,

() =¢(),t € [—1,,0].
Based on Theorem 1 and R > 0,S > 0,it is easy to
obtain that the closed-loop system X, is also regu-
lar, causal and asymptotically stable by replacing
A LALLC with Ay, +AAL LA FAALLCHAC; .
In the next,we shall prove that there exists a posi-
tive scalar J© such that the value of the cost func-
tion (4) satisfies J << J° . Similar to the proof of
Theorem 1,whent € (#4411 ] sone has

V(1) <

x (1) TF22 Fzz x(t)
21— (1) x Dy )laG—za))’

where
I, :Pi(Aki +AAlci) + (A/u JFAA/Z,)TP;Y +
Qi + TmXi +Yi +Y,T + T,,,(A/n +AAM)TZ,'(A}¢[ +

m

AAD + 3B, (P, = POE,

Iy =z, (A, FAADTZ (A, +AA.) =Y, +
P, (A, +AA.D,

D=7, (A, FAA. DT Z, (A, +AA,)) — (1 —
mQ;.
From (24),we derive

Vi <— 2"W[S + (K, +AK)"R(K, +
AK)D ]z, (26)

which gives rise to

] = Jff\'x‘%nsx(w + wl (ORu, (Ddt —

lim S 2" (O[S + (K, + AK,) 'R(K,, +

o>k =0 ‘&

AK ) Jx(de <— lim SV, ()de = — lim[ —

o>k =0k oo

Voo (O) +/%O(Va(tk) (t) _Vf;(zk‘ , (80
Va(//]_H) (l'p\l):l <V,n(0)=]".

Therefore, by Definition 3,controller (5) is a robust
resilient guaranteed cost controller for system X,
with the performance upper bound J *. The proof is
completed.

Remark 6 Based on the Theorem 1,this theo-
rem further analyzes the performance of the singular
impulsive switched system with time-varying delay.
It is necessary to point out that the controller de-
signed in Theorem 2 is not only a guaranteed cost
controller but also a resilient controller. In addition,
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there exist uncertainties in the system structure,
which, together with uncertainties in resilient con-
troller, make it more difficult to simplify inequali-
ties. The corresponding process will be stated in de-
tail.

Remark 7 The paper [23] designs a robust re-
silient guaranteed cost controller for the uncertain
singular time-delay system, but the main results in
[23] fail to work when impulsive phenomena or
switching behaviors occur. On the contrast, this
theorem is feasible for the case that impulsive phe-
nomena and switching behaviors take place at the
same time. Obviously, Theorem 1 in literature [ 23]
is the special case of this theorem,which shows that
this conclusion has the broader application and less
conservativeness.

Remark 8 It should be observed that the paper
[18] ignores uncertainties of impulses. Here, it is
more meaningful to add the uncertain term A C,,, to
the system matrix, which to some extent can reflect
some uncertainties of impulsive phenomena. Be-
sides,compared with the paper [18] ,the more com-
plex systems are considered and the more informa-
tion in Lyapunov functional are added in this theo-
rem.

Corollary 4 Consider system 3, with the cost
function (4). If,for i € M ,there exist scalars f8; <<
0(; € M) ,matrices Q; > 0,X, = 0,7, > 0,P,,Y;
satisfying (7),(10),(24),(25),and a state-depend-
ent switching signal satisfying (23),then controller
(5) is a robust resilient guaranteed cost controller
for system X, with the performance upper bound
J " in the form of (26).

2.3 The robust resilient guaranteed cost controller
design

In Theorem 2, uncertain terms AA.,AA.;,
AK,;,AC; exist in conditions, which makes it impos-
sible to solve inequalities. Therefore,how to remove
uncertain terms is the key to overcome this prob-
lem. Here, by the LMIs technique, the feasible con-
ditions solving a robust resilient guaranteed cost
controller for systems 3, are presented in
Theorem 3.

Theorem 3 Consider system X(;, with the cost
function (4). If ,for any i € M ,the following condi-
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tions hold

a. there exist scalars8; =0 € M) ,A; >0, >
0,0; > 0,matricesQ; >0,X, =0, Z, > 0,P,,Y,,G,
satisfying (7),(10) and

o bl A”}<o, 27)
L *  Aw
[ —1T G, (I+Cp G;N;
I=| * —PE-+pD.D, 0 |<o,
L * * —pol
i 7 j) € M, (28)
where
Iy, Iy, Iy, I AP B,
« Iy r,AlL 0 0
A= * x  —r, 2! 0 0 s
x % % g 0
* * * * — R! ]

[y =PA, +ATPT +Q + ¢, X, +Y, + Y +

3 B (P; — POE+ (DD +2DiDs)
j 'y, =PA. —Y,,

Iy =7, (A +AP BB,

Iy =¢DiDy — (1 — Qs

Alz =
PN, P.B.N, PN, 0 .J2,P.B,|
0 0 0 0 0
2Ny, TuBiNs ©,Nzu 0 0 )
0 0 0 0 0
|0 0 0 N, o |
[~ 0 0 0 07
S ) 0 0
Ay = * * —l 0 0 1,
* * * —l 0
| * * * — 1]
P.E =G!G, ,

b. there exists a state-dependent switching sig-
nal satisfying (11), then controller (5) is a robust
resilient guaranteed cost controller for system X,.
Here, the controller gain is

K, =AB!PT, 29
and the performance upper bound J * can be given in
the form of (26).

Proof Using (27),(29),and Schur comple-
ment lemma,we obtain that I'y; < 0 is equivalent to

A, Ay
2,
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where
All =
I, PA.,—Y, =t,Al I K! ]
* I's, ., AL 0 0
% % —, 2! 0 0 s
* * * — S 0
|« * M x  —R|

I'y, =PA,; JFAZ,P;I- +Q +7.X;,+Y, JFY;I‘ +

m

Zﬁ,_, (P, - P,)EJF(,(DII,D[( +2D'§I,Dg,) .
=1

ji=

A =A, + BK,,

o
[P.N,, P.B.Ni; PN, 0
0 0 0 0
z.Nu 7,B:Niy 7,N, 0 |,
0 0 0 0
L O 0 0 N, |
A, =
[ —qI 0 0 0
% —ql 0 0
% *  —ql 0
| = M x  —dl
From (30) ,we can derive
H, +e&DD" +¢'NTN <0, (3D
where
H, =
[y PA., —Y, T AL I K! ]
* —A0—wQ, rt,AL 0 0
* * — ., 2" 0 0 ,
* * * — S 0
| x * M x  —R|

I'yy =PA,, +ALP +Q +7.X, +Y, +Y] +

2B, (P, —P)E,
=1

ji=

D. 0 0 0 0
DT — D; 0 0 0 0
0 D, 0 0 0
D, 0 0 0 0
[P.N,, P.B,N;, P,N, 0]
0 0 0 0
N'=|z,N, 7,B,Ns 7,N, 0
0 0 0 0
L0 0 0 NiJ
Define
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FL.(») 0 0 0

% Fi () 0 0
F() =

* * (D 0

* * * Fi.(»

After some manipulations, by Lemma 1, we get

[rom (1) 3(2)9(6)

I's; I'sg o (Ap; +AADT I (K; +AK)HT
¥ — (1= 0Q 1w (A +AA DT 0 0
* * — ., 77! 0 0
* * * — S! 0
* * * * — R
<0, (32)

Whel’ep:ﬂ :Pi(Aki +AA;<;) + (Aki +AAk1')TP;'r —+
Q +7,X, +Y + Y+ 38,(P, = POE.I' =

P.(A +A8AD — Y.
(32) is equivalent to (24). From (28), by Schur

complement lemma,one has
—I G,(U+C) 0
+ |y |10 D1+

* _P]E
G,'Nj,]'
o [NLGT o0]<Co. (33)

Obviously, we can see that

0
By Lemma 1,(3) and (33),we get
—1 G.U+C;,+AC)) —0
* — P,E -

3D

Utilizing Schur complement lemma again and repla-

cing GIG; with P,E, we can see that inequality (34)

is equivalent to (25). This completes the proof.
Remark 9

niques are utilized to simplify inequalities of Theo-

It is easy to see that various tech-

rem 2. Eventually, uncertain terms are successfully
removed {rom conditions. Meanwhile, all the condi-
tions are cast into LMIs for the given scalars 8; 4,
which can be solved by the LMIs toolbox.

Remark 10
quence of inequalities of Theorem 3.

Step 1 Calculate the P;.Q;,X,.Z,,Y,; by (7),
(10) and (27).

Step 2
matrix P,E into the product of GF and G; .

Step 3
the controller gain by (29).

We state briefly the solving se-

Decompose the positive semi-definite

Verify the condition (28), and solve

Corollary 5 Consider system X;, with the cost
function (4). If ,for any i € M ,the following condi-
tions hold

a. there exist scalars 8, <<0(j € M) ,A, >0, >
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0,0; > 0,matricesQ, > 0,X, =0,Z, > 0,P,,Y,,G,
satisfying (7),(10),(27),(28),

b. there exists a state-dependent switching sig-
nal satisfying (23), then controller (5) is a robust
resilient guaranteed cost controller for system X, .
Here, the controller gain is (29),and a performance
upper bound J© can be given in the form of (26).
2.4 The optimal robust resilient guaranteed cost
controller design

Theorem 3 factually presents a set of parameter
representations of guaranteed cost controllers. From
the expression of J . the upper bound of the per-
formance not only depends on the selection of guar-
anteed cost controllers but also matrices Q;,Z; .
Therefore,it is imperative to optimize the values of
matrices in order to achieve the minimal guaranteed
cost of the corresponding closed-loop system.

Theorem 4 For system X, withAC,,, =0, and
the cost function (4),if the following optimization
problem Q,,

min,eu ./1’..<i.P’..Q’.Z’..X(..Y’Clai + Czﬁi +Cyv; S. t.

(a) (7),(9),(10),(27) ,

(b B, =0 € M),

(C) /1,‘>07(,’>O’ (35)
—al PE
(d { ]< 0, (36)
* 7(11‘1
7ﬁi1 Qi
(e) < 0, 37
* —‘3[1
—yl E'ZE
D <0, (38)
x =yl

has a solution (Z?,, s ,13,» ,@i ,Z ,)N(,» JN’,») ,then un-
der switching signal (11), there exists an optimal
resilient guaranteed cost control controller u,,, (t) =
(R}m +AK,,) x(t) for system =(;,. Here,the con-
troller gain is K. =ABTP7T ,and the minimal cost
upper bound is J., = mineyCia; + G + Cs7:s
where INQ = /{,»B;TIND?,Cl = ¢"(W$(0).C, =

0 0 - .
J " () $(s)ds,Cy :J J ¢ (@) ¢(a)dadpB.
—z(0) B
Proof If (B, .A,+¢;+P,.Q..Z;»X,.Y,) is a solu-

tion of the optimization problem Q,, ,then it is also

0

—7(0)

a feasible solution under the constraint conditions
(a), (b)), and (c). From Theorem 3, u,, (t) =
(IA(JW) +AK,,,)x(t) is a robust resilient guaranteed
cost controller. Observe that
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(36) 6w (P.E) <<a;»¢" (0)P,E$(0) <
Omax (PENC

(37) S0, (Q) < B J $T() Qs p()ds <
—z(1)

Gxx)ax(Qr )CZ ’
(38)50,.(E"ZE) < 7:s

0 0 - .
J J $ " (DE"Zy Ed (@) dadB < 6, (ETZ.E)Cs.

—2(0) J B
Therefore, the minimization of C,a; +C, 8+ C; 7, im-
plies the minimization of the guaranteed cost J .
The optimal solution of problem Q,, can be derived
from the convexity of the objective function and
constraint conditions. This completes the proof.
Remark 11 In order to obtain the optimal ro-
bust resilient guaranteed cost controller,a minimiza-
tion approach of the largest singular value of matri-
ces and a convex optimization method are intro-
duced,which play an important role in the proof. In
addition, Theorem 3 provides a feasible solution of
solving a robust resilient guaranteed cost controller
while this theorem further gives a optimal robust
resilient guaranteed cost controller. To some extent,
conclusion  of

this  theorem improves the

Theorem 3.
3 Numerical examples

Example 1 Consider the impulsive switched

systems 3, with parameters given below

—1 0 1 0
A= ,Cr = ’
0 —1.2 0 —0.1
0 0 —2 0
Aﬂ: 9A2: ’
0 0 0 —1
—0.1 O 0 0
(:Z|: }’Ar2|: }.
0 1 0 O

For the given system, the linear matrix inequalities
have not a feasible solution by Theorem 2 in [18].
Therefore,we are unable to judge the stability of the
above system and Theorem 2 in [ 18] fails to work.
However, Corollary 1 in this paper can be worked
well to check the stability of the given system.
Choosing B, = —0. 2,6,; = —0. 1,we can see that the
nonlinear matrix inequality (22) becomes the linear
matrix inequality which can be solved by LLMIs tool-
box as following

192.1580  —120.9833

l_[120.9833 76. 4228 }
Guangxi Sciences. Vol. 23 No. 4, August 2016



|: 4.6268

—7.4789
| —7.4789 '

12.0992

Under the switching signal ¢(z) = arg min
(2" (DOPx(t),i € {1,2}} ,the given system is as-
ymptotically stable from Fig. 1, which can verify the
feasibility of Corollary 1. In conclusion, both the
theoretical analysis in Remark 3 and simulation re-
sult can show the fact that Corollary 1 has the wider

application and the less conservativeness than the

result in [18].
0.35

l_;‘l(t)
0.30 —x(1) 7

0 1 2 3 4 5 6 7 8

Fig.1 The state trajectory x(z ) of the given system
Example 2 Consider the uncertain impulsive
switched singular time - varying delay system X,

with parameters given below

—0.7 0.1 0.17
A =|—0.01 —1 o0.02],
0.1 0.1 1
—1 0.1 2 7
A,=|0.2 —1.2 —o0.1/,
0 —o0.1 —1 |
[—0.3 0 0
Aa=| o —o0.1 0o |,
0 0o —o.1

A,=| 0 —0.2 0},
L0 0.1 0
T—1 1 0]
B,=| 0 0.1 o0 [,
L0 0 0.2]
[—2 0.1 0
B,=| 0 0.1 o0 [,
Lo 0 0.1
—0.9 —0.8 0
C,=C,=|—0.6 —0.9 0 |,
0 o —1

FEASE 201648 A H235% 4

1 0 0
E=|0 1 0],
0O 0 O
S=R=1I,
N, =N, =N3;;=D,,=D,;, =D;3;; =0.1I,N;; =
D;,=0,i=1,2,
F,,=F, =F; =F;; =0.1sin (0I,i=1,2,
z(¢) =0. lsin ¢.
Choose 7,, =1,u=0. 1,4, =4, =0. 01 ,and give the in-
itial function ¢(z) =[1 ¢ 0]".

By Theorem 3,we can obtain

8.6770 0.1519 —0.9043
P, =1]0.1519 8.9089 0. 3313 ,
0 0 — 13.7769
7.1749 0.0622 14. 5406
P,=]0.0622 7.9172 —0.5976 |,
0 0 12. 4873
a robust resilient guaranteed cost controller
s (1) =(K,p +AK ) x(t) with
—0.0868 —0.0015 0
K, =| 0.0869 0.0104 0 s
—0.0018 0. 0007 — 0.0276
—0.1435 —0.0012 0
K,=| 0.0072 0. 0080 0 ,
0.0145 — 0.0006 0.0125

and a performance upper bound J* =8. 677 0. The a-
bove results derived from Theorem 3 just present a
feasible solution. In the following,we aim at seeking
the optimal controller and the optimal performance
upper bound of systems 3, by Theorem 4. By sol-

ving optimization problem (2, , one gets

0.9498 0.0129 —0.3601
P, =|0.0129 0.8243 —0.3620 |,
0 0 —3.7143
0.7835 0 0.1360
Pop=| 0 0.7832 4.3182
0 0 34. 2693

The switching signal is designed by

1 2 €eQ,
o(t) = (39)

2 x() € O\,
where 3, ={x() € R" | 2" (D) (P,,,, — P02 () =
0,2(t) # 0}.8, = {2(t) € R" | 2"()(P,, —
Py, )a () = 0,2(t) # 0.

The optimal robust resilient guaranteed cost con-
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troller is designed as u,, (£) = (f(am +AK,»)x()
with

—0.0095 —0.0001 0

K, =| 0.0095 0.0010 0 .
—0.0007 —0.0007 —0.0074
—0.0157 0 0

K.=| 0.0008  0.0008 o |,
0.0001  0.0043 0.0343

and the optimal performance upper bound J.. =

0. 783 5.
From Fig. 2, under the switching signal (39),
the closed - loop system is asymptotically stable,

which can illustrate the correctness of Theorem 4.

0.10
0.08
0.06
0.04 0123 4 5]
0.02 Time(?)

0.00
-0.02
-0.04
-0.06
-0.08

signal 4

Switching

The state traectory x(#)

0 1 2 3 4 5 6 7
Time(t)

Fig. 2 The state trajectory x(z ) of the closed-loop sys-

tem
4 Conclusions

In this paper,we have investigated the problem
of the robust resilient guaranteed cost control for
the uncertain impulsive switched singular system
with time-varying delay. A robust resilient guaran-
teed cost controller and a state-dependent switching
signal have been established, which guarantee that
the closed-loop system is regular,causal,asymptoti-
cally stable, and satisfies a cost upper bound. Fur-
ther,a minimization approach and a convex optimi-
zation method have been presented to seek the opti-
mal robust resilient guaranteed cost controller. For
the sake of the computation,all the conditions have
been cast into LMIs, which can be easily solved by
the LMIs toolbox. Finally, two examples have been
provided to show the effectiveness of the main con-

clusions.
References:

[1] HESPANHA ] P, MORSE A S. Stability of switched
systems with average dwell-time[ C]//Proceedings of
the 38th IEEE Conference on Decision and Control Ari-
zona, USA: IEEE, 1999: 2655 - 2660. DOI. 10. 1109/

364

[2]

[3]

[4]

[6]

7]

[8]

[9]

[10]

[11]

(12]

[13]

CDC. 1999. 831330.
LIBERZON D,MORSE A S. Basic problems in stability
and design of switched systems[]]. IEEE Control Sys-
tems Magazine,1999,19(5) :59-70.
WANG R.ZHAO ]. Non-fragile hybrid guaranteed cost
control for a class of uncertain switched linear systems
[J1. Journal of Control Theory and Applications,2006,4
(1):32-37. DOI:10. 1007/s11768-006-5144-x.
WU Z G,SHI P,SU H Y, et al. Asynchronous {, — /..
filtering for discrete-time stochastic markov jump sys-
tems with randomly occurred sensor nonlinearities[ ] ].
Automatica,2014,50(1) :180-186.
YANG H,JIANG B, COCQUEMPOT V. A survey of
results and perspectives on stabilization of switched
nonlinear systems with unstable modes[ ] ]. Nonlinear
Analysis: Hybrid systems.2014.13:45-60.
ZHANG H B.XIE D H.ZHANG H Y.et al. Stability a-
nalysis for discrete-time switched systems with unstable
subsystems by a mode-dependent average dwell time ap-
proach[J]. ISA Transactions,2014,53(4):1081-1086.
ZONG G D,HOU L L,WU Y Q. Robust /, — /., guaran-
teed cost filtering for uncertain discrete-time switched
system with mode-dependent time-varying delays[]].
Circuits, Systems, and Signal Processing, 2011, 30(1):
17-33. DOI:10. 1007/s00034-010-9204-6.
VARAIYA P. Smart cars on smart roads: Problems of
control[ J ]. IEEE Transactions on Automatic Control,
1993,38(2):195-207.
EIREC oL B BRI i R LRI EHl S
PR ,1997,12(S1) :403-407.
WANG Y B,HAN Z J,LUO Z W. An Opening study of
intelligent transportation systems[ ] ]. Control and Deci-
sion,1997,12(S1) :403-407.
QIN S Y.SONG Y H. The theory of hybrid control
systems and its application perspective in electric pow-
er systems[ C]//Proceedings of the 2001 International
Conferences on Info-tech and Info-net. Beijing: IEEE,
2001,4:85-94. DOI:10. 1109/ICIL. 2001. 983729.
HU S S,ZHU Q X. Stochastic optimal control and a-
nalysis of stability of networked control systems with
long delay[J]. Automatica,2003,39(11) :1877-1884.
WU Z G.SHI P,SU H Y.et al. Stochastic synchroniza-
tion of markovian jump neural networks with time-var-
ying delay using sampled data[]]. IEEE Transactions
on Cybernetics,2013,43(6):1796-1806. DOI:10. 1109/
TSMCB. 2012. 2230441.
LENNARTSON B, TITTUS M, EGARDT B, et al.
Hybrid systems in process control[]J]. IEEE Control
Systems Magazine,1996,16(5) :45-56. DOI.10. 1109/
Guangxi Sciences, Vol. 23 No. 4, August 2016



[14]

[15]

[16]

[17]

(18]

[19]

I At

37.537208.

LIN J X,FEI S M,WU Q. Reliable H.. filtering for dis-
crete-time switched singular systems with time-varying
delay [ J ]. Circuits, System, and Signal Processing,
2012,31(3):1191-1214. DOI: 10. 1007/s00034-011 -
9361-2.

MA S P,ZHANG C H,WU Z. Delay-dependent stabili-
ty and H.. control for uncertain discrete switched sin-
gular systems with time-delay[J]. Applied Mathemat-
ics and Computation,2008,206(1) :413-424.

LIU X,ZHANG S M, DING X Y. Robust exponential
stability of nonlinear impulsive switched systems with
time-varying delays[]J]. Nonlinear Analysis: Modeling
and Control,2012,17(2) :210-222.

FAAT 5N, DR A0 E I bk b P 4R R G
PR BRI [T, FBM I 2 2 40 - B4 R, 2010,42(3) : 7-
10.

MAO B X,MU X W,BU C X. Guaranteed cost control
problems for a class of impulsive switched system with
time delay and uncertain parameters[]]. J Zhengzhou
Univ:Nat Sci Ed,2010,42(3) :7-10.

XU H L,TEO K L,LIU X Z. Robust stability analysis
of guaranteed cost control for impulsive switched sys-
tems[J]. IEEE Transactions on Systems,Man,and Cy-
bernetics,Part B:Cybernetics,2008,38(5) :1419-1422.

XU H L.LIU X Z.TEO K L. A LMI approach to sta-

2016 -8 A H23K% 4

[20]

[21]

[22]

[23]

[24]

[25]

bility analysis and synthesis of impulsive switched sys-
tems with time delays[J]. Nonlinear Analysis: Hybrid
Systems,2008,2(1) :38-50.

YANG C D,ZHU W. Stability analysis of impulsive
switched systems with time delays[]J]. Mathematical
and Computer Modelling,2009,50(7/8):1188-1194.
ZONG G D, XU S Y,WU Y Q. Robust H.. stabiliza-
tion for uncertain switched impulsive control systems
with state delay: An LMI approach[ J]. Nonlinear A-
nalysis: Hybrid Systems,2008,2(4):1287-1300.
WANG R.ZHAO ]. Non-fragile hybrid guaranteed
cost control for a class of uncertain switched linear sys-
tems[ J]. Journal of Control Theory and Applications,
2006,4(1) :32-37.

LIL,JIA Y. Observer-based resilient [, — /.. control for
singular time-delay systems[J]. IET Control Theory &
Applications,2009,3(10):1351-1362. DOI: 10. 1049/
let-cta. 2008. 0361.

XIE L H. Output feedback H.. control of systems with
parameter uncertainty[J]. International Journal of Con-
trol,1996.63(4) :741-750.

ZHANG F Z. Matrix Theory: Basic Results and Tech-
niques[ M. New York:Springer-Verlag,1999.

SRS R

365



