广西北部湾河口及海湾沉积物中¹³⁷Cs 含量分析* ¹³⁷Cs Analysis in the Estuary and Coastal Sediment in Beibu Gulf

胡金君¹,王慧娟¹,何正中¹,李娴雅¹,何贤文²,管永精^{1**},阮向东¹,潘少明³ HU Jinjun¹,WANG Huijuan¹,HE Zhengzhong¹,LI Xianya¹,HE Xianwen², GUAN Yongjing¹,RUAN Xiangdong¹,PAN Shaoming³

(1.广西大学物理科学与工程技术学院,广西南宁 530004;2.广西壮族自治区辐射环境监督管理站,广西南宁 530222;3.南京大学地理与海洋科学学院,江苏南京 210023)

(1. School of Physical Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China; 2. Radiation-Environment Management and Monitoring Station of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530222, China; 3. School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, Jiangsu, 210023, China)

摘要:【目的】了解广西北部湾河口及海湾沉积物中¹³⁷ Cs的含量,为定量研究北部湾沿岸区域土壤侵蚀和堆积状况,以及评价防城港红沙核电站运行对周围环境的影响提供科学依据。【方法】在广西北部湾河口及海湾中采集 32 个沉积物样品,利用高纯锗γ谱仪测定样品中¹³⁷ Cs的含量,并与周边的背景值进行比较。【结果】在河口、海 湾的表层样中,¹³⁷ Cs比活度较低,范围为 0.10~5.94 Bq/kg,平均值约为 1.23 Bq/kg。【结论】表层沉积物中, ¹³⁷ Cs含量相对陆地含量要低,主要原因可能是沉积物样品中含沙量大,¹³⁷ Cs吸附量相对较少导致。同时,自然 因素和人为活动对¹³⁷ Cs在河口及海湾沉积物中的再分配起重要作用。

关键词:137Cs 沉积物 大气沉降 北部湾

中图分类号:P736.21 文献标识码:A 文章编号:1005-9164(2017)04-0371-05

Abstract: **[Objective]**Discussing the distribution of ¹³⁷Cs in the surface sediment of estuary and coastal can promote further quantitative research on soil erosion and accumulation along the coast of the Beibu Gulf as well as provide scientific evidence for the evaluation of the environmental impact of the Red Sand Plant. **[Methods]** 32 samples were collected in the surface sediment of estuary and coastal, and the specific activity of ¹³⁷Cs were tested by HPGe spectrometer, and compared to the other kinds of samples. **[Results]** By comparing the values of ¹³⁷Cs in different kinds of samples, it is suggested the specific activity of ¹³⁷Cs in the sediment is in the range between 0. 10 Bq/kg and 5. 94 Bq/kg, and the mean value is 1. 23 Bq/kg. **[Conclusion]** Specific activity of ¹³⁷Cs in the sediment less than other land samples, it may affected by the ra-

tio of powder sand in the sediment is larger than other land surface samples. The research on the specific activity of the sediments and the distribution of sampling sites suggested that natural factors and human activities played an important role in the redistribution of ¹³⁷Cs in sediments.

Key words:¹³⁷ Cs, sediment, atmospheric precipitation, Beibu Gulf

收稿日期:2017-05-12

作者简介:胡金君(1989-),女,硕士,主要从事核技术应用研究。 *国家自然科学基金项目(41166002,11665006),广西自然科学 基金项目(2012GXNSFFA060005,2016GXNSFAA380142)和广 西教育厅科研项目(KY2016YB023)资助。

^{* *} 通信作者:管永精 (1978-),男,教授,主要从事核技术及同 位素应用基础研究, E-mail: yjguan@gxu. edu. cn。

0 引言

【研究意义】大陆向海洋输送物质的途径主要有 大气沉降和陆地径流,在河口海湾及近岸环境中,陆 地径流对物质的输入有着举足轻重的作用。土壤侵 蚀是陆地径流为海洋输送物质的主要形式,也引起很 多世界性环境问题,而了解土壤的迁移过程及侵蚀速 率是治理土壤侵蚀的基础[1-2]。海岸带是海陆相互作 用最为活跃、对人类活动及全球变化反应最为敏感的 区域,是研究陆海交互作用的重点目标。【前人研究 进展】近 50 年来,¹³⁷Cs 作为放射性示踪元素被广泛 应用于海洋、湖泊、湿地、河流等多种沉积物的沉积年 代研究。潘少明等^[3]使用¹³⁷Cs研究海南岛洋浦港、 福建厦门外港和浙江象山港的现代沉积速率并探讨 现代沉积过程的变化。夏小明等[4] 探讨了东海沿岸 海底沉积物中的¹³⁷ Cs 和²¹⁰ Pb 的分布情况及沉积环 境。Bai 等^[5]通过研究¹³⁷Cs 与⁷Be 在南湖泊及土壤 中的沉积速率,探索该区域内土壤侵蚀情况。王爱军 等^[6]利用¹³⁷Cs 和²¹⁰ Pb 研究了江苏王港盐沼的现代 沉积速率及现代沉积过程的变化情况。王福等[7]利 用²¹⁰Pb 和¹³⁷Cs 研究了渤海湾地区的现代沉积速率。 Everett 等^[8]以¹³⁷Cs 和 Pu 为示踪元素, 探讨了澳大 利亚 Herbert 河流的土壤侵蚀状况,研究表明沉积物 中¹³⁷Cs与Pu的比活度具有很好的相关性。Hancock 等^[9]利用¹³⁷Cs 和 Pu 作为记年工具测量了新西 兰和澳大利亚湖泊与海湾中沉积物的沉积速率。徐 伟等^[10]研究了广西北部湾沿岸土壤¹³⁷Cs 背景值及 分布特征。【本研究切入点】国内关于南海地区¹³⁷Cs 的研究数据相对较少,研究区域主要集中在南海珠江 口、南海近海海域及大亚湾等区域。刘怀等[11]对南 海珠江口及邻近海区进行研究,结果表明,137Cs对珠 江口海区放射性强度的影响较小,天然放射性铀、钍 系列和天然放射性40K等影响较大。陈进兴等^[12]测 量了南海近海各种生物中¹³⁷Cs含量,约为0.4~0.9 Bq/kg。刘广山等^[13]测定了大亚湾与南海东北部海 域中沉积物137 Cs含量。南海东北部沉积物中137 Cs 含量约为1.04~1.52 Bq/kg,大亚湾海域的¹³⁷Cs含 量约为 0.92~3.72 Bq/kg,高于南海东北部;与中国 其它海域的137Cs 含量相比,南海东北部海域沉积物 中¹³⁷Cs含量稍低,且其沉积物中的¹³⁷Cs含量随离岸 距离呈减小趋势,而广西北部湾河口及海湾沉积物 中¹³⁷Cs 的含量测定未见报道。【拟解决的关键问题】 以北部湾近岸河口沉积物为研究对象,分析沉积物中 的¹³⁷Cs 分布特征,为北部湾沿岸区域土壤侵蚀和堆

积状况的定量研究以及防城港红沙核电站运行对周 围环境影响评价提供科学依据。

1 材料与方法

1.1 取样

选择北海、钦州、防城港等 3 个地区,研究范围 21.40°~22.00°N,108.0°~109.2°E的,采样点地理 位置及样品描述见表 1。样品的采集分两次进行,第 一次取样时间是 2012 年 7 月,采样点为防城港核电 站周边陆地及北部湾相关河口(南流江、北仑河等)红 树林生长区域。第二次采样时间是 2012 年 8 月,采 样地点是防城港核电站周边海域。现场将样品密封 在分样袋中,带回实验室进行预处理,然后进行了 ¹³⁷Cs比活度分析。

1.2 样品制备

先将沉积物样品从分样袋中取出,分别放于陶瓷 研钵中,并放入干燥箱中加热烘干,再用陶瓷研钵对 干燥的土壤进行研磨,过筛,将研磨好的土壤装入圆 柱形塑料样品盒内,最后用电子天平称取样品的重 量,并在样品盒上标记。

1.3 ¹³⁷Cs比活度的测量

比活度分析采用 γ 谱仪直接测量,用美国 OR-TEC 公司生产的 GMX 系列高纯锗同轴探测器测 量¹³⁷Cs 的放射性活度,探测器的效率为 40%。探测 器置于老铅制成的铅室中,经过铅室屏蔽,可将本底 降低至无铅室屏蔽时的 10%。样品测量时间为 24 h,并使用标准样品进行比对校正。高纯锗 γ 谱仪主 要由高纯锗探头、前置放大器、主放大器、多道采集 卡、高压电源以及电脑(能谱分析软件 GammaVision 6.08)。部分样品在广西辐射环境监督管理站进行比 对测量,测量所用高纯锗 γ 谱仪为 Canberra 公司宽 能探测器,分析软件为 Genie2000。

使用相对法测量137Cs比活度,其计算公式如下:

$$A_x = \frac{S_x}{S_0} \cdot \frac{m_0}{m_x} \cdot \frac{t_0}{t_x} \cdot A_0,$$

其中 A_0 为标准样的比活度, m_0 为标准样的质量, t_0 为标准样的计数时间, S_0 为标准样的有效计数(¹³⁷ Cs 661.6 keV 全能峰的总计数); A_x 为待测样的比活度, m_x 为待测样的质量, t_x 为待测样的计数时间, S_x 为待测样的有效计数。

标准样比活度 A_0 为 61.7 Bq/kg(1999 年),衰变 校正至 2013 年,为 44.65 Bq/kg, m_0 为 123.11 g,计 数时间 t_x 与 t_0 均为 24 h。各沉积物样品中¹³⁷Cs 的比 活度见表 1。

表 1 采样点位置及测量结果

Table 1 Latitude and longitude of sampling sites and ¹³⁷Cs results

样品号 Sample number	采样点位置 Sampling sites	¹³⁷ Cs 比活度 Specific activity of ¹³⁷ Cs (Bq/kg)	采样点描述 Description of sample sites
30	E108°03'19",N21°32'15"	0.20±0.02	北仑河口沉积物 Sediment from Beilun estuar
31	E108°01′50″,N21°32′59″	2.85±0.25	北仑河口,竹山河道内的泥 Mud from river in Zhushan Village,near Beilun estuar
33	E108°35′37″,N21°48′29″	0.44±0.07	钦州港公园附近的红树林边底泥 Mud from mangrove at Qinzhou Port Park
34	E108°45′59″,N21°37′13″	0.61±0.06	三娘湾近岸沉积物 Sediment from Sanniang Bay
35	E108°50′24″,N21°40′39″	3.09±0.24	炮台附近海湾内,山坡雨水冲积红色泥沙 Red sand adjoins alluvial soil from Paotai Village
36	E109°10′30″,N21°24′51″	0.37±0.04	北海银滩附近红树林泥样 Sand and mud from mangrove near Beihai Silver Beach
38	E109°0′56″,N21°36′54″	0.71±0.07	南流江入海口附近潮水闸口泥样 Sand and mud from tidal gateway of Nanliu River
40	E108°35′30″,N21°43′7″	0.37±0.04	钦州港底泥 Mud from Qinzhou Port
41	E108°34′30″,N21°40′32″	0.53±0.05	红沙核电厂外海底泥 Mud from open sea at Hongsha nuclear power plant
42	E108°38′1″,N21°41′26″	0.10±0.01	钦州港码头西延底泥 Mud from the west extension of the Qinzhou Port
43	E108°33′12″,N21°36′42″	0	大坪坡外海底泥,大面积养大蚝 Mud from oyster farming at the open sea of Dapinpo
44	E108°41′7″,N21°37′48″	2.60 ± 0.24	钦州港新建填海堤外沉积物 Sediment from recently sea filling area at Qinzhou Port
45	E108°43′12″,N21°38′4″	0	犀牛脚镇外海 1 km 底泥 Mud from the open sea with 1 km distance to Xiniujiao Town
46	E108°38'10", N21°44'35"	2.92±0.37	金鼓江养殖区,桥内底泥 Mud under the bridge and in the aquicultural farm area at Jingu River
47	E108°35′32″,N21°44′50″	2.80±0.26	钦州港红树林土壤 Soil from the center of mangrove at Qinzhou Port
48	E108°35′31″, N21°44′23″	2.32±0.24	钦州港红树林土壤 Soil from the center of mangrove at Qinzhou Port
49	E108°35′37″, N21°44′25″	0.87±0.12	钦州港红树林土壤 Soil from the center of mangrove at Qinzhou Port
50	E108°35′4″, N21°49′48″	0.66±0.06	钦江口底泥,航道旁,排污口附近 Mud from Qinjinang estuary,near waterway and sewage outfall
51	E108°33′55″,N21°48′18″	1.37±0.10	钦江口外 3 km 底泥,航道旁 Mud from the open sea with 3 km distance to Qinjiang estuary and near waterway
52	E108°31′8″, N21°46′48″	5.94±0.20	茅岭江出口外4 km,茅尾海内底泥 Mud from center of Maoweihai sea and wtih 4 km distance to Maol- ingjiang estuary
53	E108°32′9″,N21°49′49″	0.72±0.06	茅尾海中部底泥 Mud from Maoweihai Sea
54	E108°28′14″,N21°50′53″	0.38±0.04	茅岭江内底泥 Mud from Maoliangjing River
55	E108°29′44″,N21°49′23″	0	茅岭江外底泥(沙多) Mud and sand from outside the Maoliang River
56	E108°36′5″,N21°51′41″	1.39±0.15	钦江红树林土壤 Soil from mangrove at Qinjiang River
58	E108°36′5″,N21°51′41″	1.26 ± 0.15	钦江红树林林外土壤 Soil from outside the mangrove at Qinjiang River
59	E108°35′34″, N21°45′27″	1.81±0.19	七十二泾红树林片区外土壤,无树林覆盖 Soil from outside of mangrove at Qishierjing, without forest cover
60	E108°35′34″, N21°45′27″	0.22±0.05	七十二泾红树林边缘地带土壤 Soil form rim of mangrove at Qishierjing
61	E108°35′34″,N21°45′27″	0	七十二泾红树林内土壤 Soil from mangrove at Qishiering

Continue table 1

样品号 Sample number	采样点位置 Sampling sites	¹³⁷ Cs 比活度 Specific activity of ¹³⁷ Cs (Bq/kg)	采样点描述 Description of sample sites
62	E108°36′7″,N21°51′48″	0.77±0.07	钦江桥内底泥,航道旁 Mud under Qinzhou bridge,near waterway
63	E108°32′36″,N21°43′43″	1.28±0.11	龙门港养殖场泥样 Mud from aquicultural farm at Longmen Port
64	E108°32′36″,N21°43′43″	1.46±0.17	龙门港养殖场泥样 Mud from aquicultural farm at Longmen Port
65	E108°45′43″,N21°35′54″	1.32 ± 0.15	三娘湾沉积物 Sediment from Sanniang Bay
平均值 Mean value		1.23 ± 0.12	

2 结果与分析

表1所示的32个河口海湾样品中4个样品的测 量值低于探测限。43 号样品和 45 号样品比活度为 0,可能是受人类活动干扰所致,55 号样品和 61 号样 品比活度为 0,则可能是由于样品中含泥量少,吸附 的¹³⁷Cs少导致。其他河口海湾沉积物样品中¹³⁷Cs 比活度较低,比活度范围为 0.10~5.94 Bq/kg,平均 值约为 1.23 Bq/kg。52 号样品中¹³⁷ Cs 比活度为 (5.94±0.20) Bq/kg,高于其他样品,可能是由于采 样点位于茅尾海中部,有较多支流(茅岭江等)流入茅 尾海,江水中携带的¹³⁷Cs在其中部沉积下来,导致沉 积物中所吸附的137 Cs的含量较高。刘广山等[13]给 出了我国各海区海湾沉积物中¹³⁷Cs的含量,其中南 海东北部和大亚湾表层沉积物中137 Cs 的平均值为 1.16 Bq/kg 和 2.41 Bq/kg,其他海域的平均值为 5.6~19.2 Bq/kg。考虑到取样时间相差 20 年(¹³⁷Cs 的半衰期为 30 年),将刘广山等[13] 给出的南海东北 部和大亚湾表层沉积物中137Cs的含量用本研究的取 样时间进行归一化处理,其平均值分别为 0.74 Bq/ kg 和 1.54 Bq/kg。我国沿海从北到南沉积物中的 ¹³⁷Cs含量逐渐减小^[13],因此广西北部湾河口及海湾 表层沉积物中137Cs含量较低是可以理解的。同时, 本文的研究区域与大亚湾在地理位置和海洋环境都 比较接近,所以平均值也比较接近。在这同一区域, 对比徐伟等[10]给出的数据,在自然林地、水稻田、旱 地、草地、河口海湾不同的表层样中,广西北部湾各土 壤类型表层样中的¹³⁷Cs比活度空间分布具体表现为 水稻田>林地>旱田>草地≈河口海湾,河口海湾沉 积物样品¹³⁷Cs比活度值最低。

3 结论

与我国其他海域相比,北部湾河口及海湾沉积物

中¹³⁷Cs的比活度与大亚湾表层沉积物相当,比南海 东北部略高,比其他海域低,与目前的研究结果基本 一致。对比不同红树林取样点,及人类活动密切的取 样点,可以看出不同自然因素和人为活动对¹³⁷Cs在 河口、海湾沉积物及陆地土壤中的再分配起到重要作 用。通过分析广西北部湾研究区域的¹³⁷Cs空间分布 特征及垂直分布特征,可以为研究广西北部湾的土壤 侵蚀和堆积状况提供帮助,也可以为今后防城港红沙 核电站的运行对环境的影响提供基础数据。

本研究只对表层土壤及沉积物中¹³⁷Cs含量及分 布特征进行了分析,结合样品中重金属、有机质及其 他放射性同位素的测量将对环境评价更有意义。

参考文献:

- 【1】 张金良,于志刚,张经,等.黄海西部大气湿沉降(降水) 中各元素沉降通量的初步研究[J].环境化学,2000,19 (4):352-356.
 ZHANG JL,YU ZG,ZHANG J, et al. Wet deposition (precipitation) of major elements at two sites of northwestern Yellow Sea [J]. Environmental Chemistry, 2000,19(4):352-356.
 [2] 李占斌,朱冰冰,李鹏.土壤侵蚀与水土保持研究进展
- Z」学百風,禾你你,学柄. 工爆使限与水工休存研究进展
 [J]. 土壤学报,2008,45(5):802-809.
 LIZB,ZHUBB,LIP. Advancement in study on soil erosion and soil and water conservation[J]. Acta Pedologica Sinica,2008,45(5):802-809.
- [3] 潘少明,朱大奎,李炎,等.河口港湾沉积物中的¹³⁷Cs 剖 面及其沉积学意义[J]. 沉积学报,1997,15(4):67-71, 66.

PAN S M,ZHU D K,LI Y, et al. ¹³⁷ Cs profile in sediments in estuaries and its application in sedimentology [J]. Acta Sedimentologica Sinica, 1997, 15(4):67-71, 66.

[4] 夏小明,谢钦春,李炎,等.东海沿岸海底沉积物中的¹³⁷ Guangxi Sciences, Vol. 24 No. 4, August 2017 Cs、²¹⁰ Pb 分布及其沉积环境解释[J]. 东海海洋,1999, 17(1):20-27.

XIA X M, XIE Q C, LI Y, et al. ¹³⁷Cs and ²¹⁰Pb profiles of the seabed cores along the East China Sea coast and their implications to sedimentary environment[J]. Donghai Marine Science, 1999, 17(1): 20-27.

- [5] BAI Z G, WAN G J, HUANG R G, et al. A comparison on the accumulation characteristics of ⁷Be and ¹³⁷Cs in lake sediments and surface soils in western Yunnan and central Guizhou, China[J]. CATENA, 2002, 49(3):253-270.
- [6] 王爱军,高抒,贾建军,等. 江苏王港盐沼的现代沉积速率[J]. 地理学报,2005,60(1):61-70.
 WANG A J,GAO S,JIA J J,et al. Contemporary sedimentation rates on salt marshes at Wanggang,Jiangsu, China[J]. Acta Geographica Sinica,2005,60(1):61-70.
- [7] 王福,王宏,李建芬,等. 渤海地区²¹⁰ Pb、¹³⁷ Cs 同位素测年的研究现状[J]. 地质论评,2006,52(2):244-250.
 WANG F, WANG H, LI J F, et al. Current study of ²¹⁰ Pb and ¹³⁷ Cs geochronology in the Circum-Bohai Sea region[J]. Geological Review,2006,52(2):244-250.
- [8] EVERETT S E, TIMS S G, HANCOCK G J, et al. Comparison of Pu and ¹³⁷Cs as tracers of soil and sediment transport in a terrestrial environment[J]. Journal of Environmental Radioactivity, 2008, 99(2):383-393.
- [9] HANCOCK G J, LESLIE C, EVERETT S E, et al. Plutonium as a chronomarker in Australian and New Zealand sediments: A comparison with ¹³⁷Cs[J]. Journal of Environmental Radioactivity, 2011, 102(10): 919-929.

[10] 徐伟,潘少明,贾培宏,等.北部湾防城港沿岸土壤¹³⁷Cs
 背景值及表层分布特征[J].地理研究,2015,34(4):
 655-665.
 XU W,PAN S M,JIA P H, et al.¹³⁷Cs reference inven-

tory and its distribution in surface soil along the Fangchenggang coastal zone of Beibu Gulf[J]. Geographical Research, 2015, 34(4):655-665.

- [11] 刘怀,陈炽,梁谦林.南海珠江口海区人工放射性核素⁹⁰ Sr,¹³⁷ Cs 分布特征的研究[J].海洋科学,1989,13
 (1):62-64.
 LIU H, CHEN Z, LIANG Q L. Study of distribution character of artificial radioactives ⁹⁰ Sr,¹³⁷ Cs in the Zhujiang Estuary area in South China Sea[J]. Marine Science,1989,13(1):62-64.
- [12] 陈进兴,吴世炎,施纯坦,等.南海近海放射性背景值的综合研究[J].同位素,1993,6(1):41-46.
 CHEN J X, WU S Y, SHI C T, et al. Comprehensive study of radioactive background in the coastal waters of South China Sea area[J]. Journal of Isotopes, 1993, 6 (1):41-46.
- [13] 刘广山,黄奕普,陈敏,等. 南海东北部表层沉积物天然放射性核素与¹³⁷Cs[J].海洋学报,2001,23(6):76-84.
 LIUGS,HUANGYP,CHENM,et al. Specific activity and distribution of natural radionuclides and ¹³⁷Cs in surface sediments of the northeastern South China Sea[J]. Acta Oceanologica Sinica,2001,23(6):76-84.

(责任编辑:尹 闯)