#### DOI:10.13656/j. cnki. gxkx. 20181225.008

王涛,黄国任,温静娴,等. YB-10Al 铝合金物相组成和断口形貌分析[J]. 广西科学,2018,25(6):645-648.

WANG T, HUANG G R, WEN J X, et al. Analysis on the phase component and fracture morphology of YB-10 aluminum alloys [J]. Guangxi Sciences, 2018, 25(6):645-648.

# YB-10Al 铝合金物相组成和断口形貌分析\* Analysis on the Phase Component and Fracture Morphology of YB-10 Aluminum Alloys

王 涛<sup>1</sup>,黄国任<sup>1</sup>,温静娴<sup>1</sup>,何 维<sup>1\*\*</sup>,陆美文<sup>2</sup> WANG Tao<sup>1</sup>,HUANG Guoren<sup>1</sup>,WEN Jingxian<sup>1</sup>,HE Wei<sup>1</sup>,LU Meiwen<sup>2</sup>

(1.广西大学资源环境与材料学院,广西南宁 530004;2.广西水利电力职业技术学院,广西南宁 530023)

(1. School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi, 530004, China; 2. Guangxi Vocational College of Water Resources and Electric Power, Nanning, Guangxi, 530023, China)

摘要:【目的】研究 YB-10Al 铝合金的物相组成和断口形貌,分析掺杂对合金结构和性能的影响。【方法】利用 X 射线粉末衍射仪和带能谱的扫描电子显微镜研究两组不同成分的 YB-10Al 铝合金的物相组成及断口形貌。【结 果】YB-10Al 铝合金所含物相有 Al(主要相)、AlN(少量)、Si(少量)、Fe(微量)等,且两组样品所含物相略有差 异;合金断口形貌显示为浅而小的韧窝。【结论】YB-10Al 铝合金试样为韧性断裂,断裂机制为微孔聚集型。

关键词:YB-10Al 合金 X 射线衍射 SEM/EDS 分析 韧性断裂

**中图分类号:**TG151 文献标识码:A 文章编号:1005-9164(2018)06-0645-04

Abstract: [Objective] The phase component and fracture morphology of YB-10 aluminum alloys are studied, and the effects of doping on the structure and properties of the alloy are analyzed. [Methods] The phase component and fracture morphology of two groups of different componential YB-10 Al alloys have been investigated by X-ray powder diffractometer (XRD) and scanning electron microscopy (SEM) with energy spectrum. [Results] The results suggest that the phase of YB-10Al alloys consist of Al (major phase), AlN(tiny amount), Si (tiny amount), Fe (trace amount) and so forth. There are slight differences of phase component between different samples. The fracture morphology of YB-10Al alloys is shown as shallow and small dimples. [Conclusion] The YB-10Al alloys exhibit ductile fracture and the fracture mechanism is micro-

porous aggregation type.

Key words: YB-10Al alloys, X-ray diffraction, SEM/EDS analysis, ductile fracture

# 0 引言

【研究意义】随着现代化铁道车辆向高速化、轻量 化<sup>[1]</sup>的发展趋势,人们对材料的性能也提出越来越高 的要求。铝合金因其密度小、塑性优良、比强度高、耐 腐蚀性好、价格低廉已成为汽车、航空、航海及自行车 制造的重要轻质材料<sup>[2]</sup>。且铝合金表面易形成氧化

收稿日期:2018-08-29

**作者简介:**王 涛(1993-),男,研究生,主要从事合金相结构及 其性能的研究。

<sup>\*</sup>国家自然科学基金项目(51461004)和广西壮族自治区教育厅 高校科研项目(LX2014570)资助。

<sup>\* \*</sup> 通信作者:何 维(1965-),女,教授,主要从事合金相结构 及其性能的研究,E-mail:wei\_he@gxu.edu.cn。

物钝化膜,使其能在大多数自然环境(如深海)和化学 介质中减少腐蚀的发生[3-5]。然而,铝合金表层中缺 陷的存在(如气孔)使得活泼的阴离子易在表面析出, 致使其抗点蚀的能力下降[6-7]。【前人研究进展】为满 足工业使用的要求,通常采用如下5种方式改善铝合 金抗点蚀的性能:1)加入腐蚀抑制剂[8];2)表面处 理<sup>[9-10]</sup>; 3) 微观结构控制<sup>[11]</sup>; 4) 添加合金化元 素<sup>[12-13]</sup>;5) 表面涂覆涂层<sup>[14]</sup>。尤其对 2XXX 和 6XXX 系铝合金而言,在人工时效过程中加入 Cu、 Mn 元素可以显著地提升其耐磨性能<sup>[15]</sup>。Budsarakham 等<sup>[16]</sup>证实在铸造 6063 型 Al 合金中加入 Cr 元 素并进行阳极氧化处理,其抗腐蚀性随着 Cr 含量的 增加,腐蚀电流  $I_{corr}$ 呈正相关性;且其微观结构显示, Cr含量的增加促进了金属间化合物的形成,但却抑 制 Al 合金表面氧化还原反应的进行。就 2XXX 系 粉末冶金工艺铸造铝合金而言,添加 SiC 和 Al<sub>2</sub>O<sub>3</sub>颗 粒可明显改善其表面硬度和耐磨性。然而人工时效 过程中,对于 SiC 颗粒能否加速人工时效过程尚存争 议。为确定 SiC 颗粒在 Al 合金人工时效中的作用, Ashwath 等<sup>[17]</sup> 研究含有 6% SiC、6% Al<sub>2</sub> O<sub>3</sub> 以及 0.25%石墨烯的2024型Al合金,经微波烧结后热拉 伸试样的力学性能,其结果表明在相同的工艺条件 下,掺杂 6% Al<sub>2</sub>O<sub>3</sub>的 Al 合金在硬度和极限抗拉强度 等性能方面均优于其他两种成分的 Al 合金。Bach 等<sup>[18]</sup>在热挤压成型的基础上,通过掺杂 Mg 和 AlN 研究 Al 合金的微观结构和电化学特性,其开路电位 和动电位极化实验结果表明, Mg 和 AlN 的添加可以 提高 Al 合金表面钝化膜的腐蚀及点蚀电位;电化学 阻抗谱结果同样证实了 Mg 和 AlN 的添加使钝化膜 的厚度和电荷转移电阻升高,进而改善钝化膜的稳定 性和抗点蚀的能力;另外,X射线光电谱进一步阐明 Mg 和 AlN 的添加能使 Al 合金钝化膜稳定性提升的 原因——钝化膜中存在稳定钝化膜的 Mg 氧化物/氢 氧化物和 AlN 与氧化铝/氢氧化铝;再者,由背散射 电子的观测图像可知,抗点蚀性的改善与基体金属中 的晶粒尺寸减小和缺陷数量减少相关。【本研究切入 表 1 两组试样的成分组成

Table 1 The composition of two groups of samples

点】因掺杂会对 Al 合金的结构和性能产生影响,本 文采用实验的方法研究两个 YB-10Al 合金样品的微 观断口形貌及物相组成,分析 YB-10Al 铝合金试样 的断裂机制。【拟解决的关键问题】为提高铝合金的 性能提供数据支持。

# 1 材料与方法

将拉伸断口一端的 YB-10Al 合金制成 15 mm× 15 mm×2 mm 的薄片。在实验前,为保持 YB-10Al 的拉伸端口清洁无氧化污染,可用脱脂棉蘸取适量无 水乙醇(95%,AR)反复擦洗;用于 X 射线衍射 (XRD)实验的试样,应将其表面分别用 1 200 目、 1 500目、3 000 目的砂纸反复打磨直至无划痕和异物 污染。利用 XRD 进行物相分析,同时用带有能谱 (EDS)的 Hitachi S3400 扫描电子显微镜(SEM)观测 样品的断口形貌,并利用能谱分析样品中的成分组成 和合金相的成分。

对两组(A、B)不同成分的试样进行 XRD 测试, 并用日本理学 D/MAX 2500V 型 X 射线衍射仪收集 衍射数据。实验条件:电压 40 kV,电流 50 mA,辐射 源靶为 CuKa(λ=0.154 055 nm),以连续扫描方式采 集数据,扫描速度为 4°/min,步长为 0.02°,20 范围为 10~80°。采用 Jade 5.0 软件和其所含有的粉末衍射 卡片数据库对样品的 XRD 数据做物相分析。

# 2 结果与分析

### 2.1 试样的成分组成

利用 SEM 和 EDS 对两组 YB-10Al 合金试样的 断口进行成分和显微结构分析,其结果如表 1 所示。 与 2024Al 型合金相比,其 Mn 和 N 元素的含量较 高。因为 YB-10Al 合金以 2024Al 型合金为基础,并 增加 Mn 和陶瓷颗粒的含量,用以提高其耐磨性和耐 蚀性,它的主要相有 Al、AlN 及 Si;而 2024Al 合金的 以含 Si、Mg、Cu 的 Al(04-0787)为主。与 2050Al-Li 型合金相比,YB-10Al 合金的合金化元素不包含贵金 属(Ag),成本更低。

| 样品 Sample                 | 成分组成 Composition (at. %) |      |      |      |      |      |      |      |      |      |      |       |
|---------------------------|--------------------------|------|------|------|------|------|------|------|------|------|------|-------|
|                           | Al                       | Mn   | Cu   | Li   | Fe   | Mg   | Ag   | 0    | Ν    | Si   | Zn   | Other |
| Sample A                  | 92.10                    | 0.55 | 0.37 | 0    | 0    | 0    | 0    | 6.53 | 0.38 | 0.07 | 0    | 0     |
| Sample B                  | 93.98                    | 0.62 | 0.31 | 0    | 0.13 | 0    | 0    | 3.98 | 0.12 | 0.49 | 0.07 | 0.30  |
| $2024 \mathrm{Al}^{[17]}$ | 95.76                    | 0    | 1.80 | 0    | 0.25 | 1.75 | 0    | 0    | 0    | 0.49 | 0    | 0     |
| 2050Al-Li <sup>[19]</sup> | 94.05                    | 0.20 | 0.96 | 3.92 | 0.05 | 0.45 | 0.10 | 0    | 0    | 0.08 | 0.10 | 0.09  |

#### 2.2 XRD 物相分析

以连续扫描方式测得试样 A 的 XRD 图谱(图 1)。利用 Jade5.0 对 XRD 数据进行物相分析可知, 试样 A 主要的物相为 Al(04-0787)、Si(77-2108)、 AlN(46-1200);由图2可知,试样B的主要相是Al (04-0787)和少量相 Si(77-2108)。其中试样 A 中的 AlN(46-1200)主要聚集于合金的局部表面。和 AA8006-Al-Fe-Mn 铝合金相比<sup>[11]</sup>, YB-10Al 合金中 明显存在两种强化相 AlN 和 Si, 而 AA8006 型铝合 金以 Al(04-0787) 相为主,并有微量的 Al<sub>6</sub> MnFe 析 出强化相。和 AA6061 型铝合金<sup>[7]</sup>相比, YB-10Al 的 强化相种类明显较少,在AA6061型铝合金中,存在 3种金属间化合物分别为 AlCuMgSi、Mg<sub>2</sub>Si 和 AlMn。虽然 YB-10Al 合金中含有 Mn 元素,但由于 热处理工艺(升温速率、降温速率)和掺杂元素含量的 不同,YB-10Al 中并未发现 Mg<sub>2</sub> Si、AlCuMgSi 和 AlMn 3 种强化相。









#### 2.3 试样断口 SEM/EDS 形貌分析

铝合金断裂的实质是材料在应力下空洞的萌生、 广西科学 2018年12月 第25卷第6期 扩展至聚合的过程,而影响铝合金断裂韧性的因素无 外乎内因(金属氧化物夹杂和合金熔炼时吸氢引起的 针孔)和外因(合金成分、晶粒组织、第二相)。本文利 用 SEM 和 EDS 对型号为 YB-10Al 的锻造铝合金断 口形貌进行分析研究,结果表明 YB-10Al 铝合金的 断口形貌为韧窝状,试样为韧性断裂,断裂机制为微 孔聚集型。

如图 3a 所示,在试样 A 边缘区域存在氧化现 象,氧化层的厚度约 20  $\mu$ m。图 3b 中的中心断口形 貌较为平整,主要由直径大小约为 10  $\mu$ m、深浅不一 的韧窝构成。在图 3c 中存在一个由条纹和第二相颗 粒组成的 200 mm×80 mm 的平台。由相应的 EDS 成分分析可知,该平台主要成分的原子百分比 (at. %)为 65.63(Al)、1.43(Mn)、0.56(Cu)、10.80 (Fe)、19.17(O)、0.14(Si)、1.90(N)、0.20(F)、S、Cl 等;其中条状平台主要由第二相 Al<sub>2</sub>O<sub>3</sub>组成,而平台 上的白色颗粒物为 FeO,浅白色的颗粒物为 Fe。由 图 3d 的微区断口形貌可知,韧窝呈 45°方向延伸,韧 窝周围有明显的撕裂棱和密集的微孔。



图 3 试样 A 在不同放大倍数下的断口形貌 Fig. 3 The fracture morphology of sample A at different magnifications

由图 4a 易知,试样 B 的断口中韧窝分布均匀,韧 窝小而浅且在韧窝底部有第二相颗粒存在;在大韧窝 周围的某些撕裂棱附近分布着许多浅微孔;大韧窝包 围小韧窝,说明试样在断裂前发生明显的塑性变形。 当试样受到拉伸或剪切变形时,第二相粒子与基体界 面首先成为裂纹源。随着应力的增加,应力集中程度 加大,塑性变形量增加,韧窝逐渐撕开,韧窝周边形成 较大塑性变形的白亮的撕裂棱(图 4d)。

图 4b 中的断口形貌比较平整,主要由直径大小 不一、浅而平的韧窝和夹杂组成。图 4c 中有第二相 的平面状组织出现,由相应的 EDS 成分分析可知,其 中主要成分的原子百分比(at. %)为 95.13(Al)、 0.56 (Mn)、0.28(Cu)、0.15(Ca)、3.87(O);图 4c 中 的条状平台上存在一系列相互平行的波浪形条纹,每 条条纹代表一次应力循环,条纹的间距反映了应力大 小。图 4d 中,韧窝周围的撕裂棱取向与宏观断口方 向一致。



图 4 试样 B 在不同放大倍数下的断口形貌 Fig. 4 The fracture morphology of sample B at different magnifications

# 3 结论

YB-10Al 铝合金的主要相为 Al(04-0787),第二 相为 AlN(46-1200)、Si(77-2108)以及微量的 Fe 颗 粒(06-0696)。其断裂机理为微孔聚集型的韧性断 裂,深浅不一、直径 10 μm 的韧窝表明该铝合金具有 十分优异的塑性。

#### 参考文献:

- [1] 白建颖,杨尚磊,贾进,等. A6N01 铝合金焊接接头疲劳 损伤和断口形貌分析[J]. 电焊机,2015,45(6):121-124.
  BAIJY,YANGSL,JIAJ, et al. Analysis of fatigue damage and fracture appearance on welded joint of A6N01 aluminum alloy[J]. Electric Welding Machine, 2015,45(6):121-124.
- [2] YANG S L,LIN Q L. Microstructures and properties of the Al-4. 5Zn-1. 5Mg-0. 5Mn aluminum alloy welding joints[J]. Advanced Materials Research, 2010, 148/149: 640-643.
- [3] CANEPA E, STIFANESE R, MEROTTO L, et al. Corrosion behaviour of aluminium alloys in deep-sea environment: A review and the KM3NeT test results [J]. Marine Structures, 2018, 59:271-284.
- [4] LIANG M X, MELCHERS R, CHAVES L. Corrosion and pitting of 6060 series aluminium after 2 years exposure in seawater splash, tidal and immersion zones[J]. Corrosion Science, 2018, 140:286-296.
- [5] VALLABHANENI R, STANNARD T J, KAIRA C S, et al. 3D X-ray microtomography and mechanical characterization of corrosion-induced damage in 7075 aluminium (Al) alloys[J]. Corrosion Science, 2018, 139: 97-113.
- [6] LIU J H,ZHAO K,YU M, et al. Effect of surface abrasion on pitting corrosion of Al-Li alloy[J]. Corrosion Science, 2018, 138:75-84.

- [7] LY R, HARTWIG K T, CASTANEDA H. Effects of strain localization on the corrosion behavior of ultra-fine grained aluminum alloy AA6061[J]. Corrosion Science, 2018,139:47-57.
- [8] NAM N D, HUNG T V, NGAN D T, et al. Film formation in Y(4NO<sub>2</sub> Cin)<sub>3</sub> compound on 6061 aluminum alloy to protect against corrosion in chloride ion media [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67:495-504.
- [9] GONZALEZ-CANCHE N G,FLORES-JOHNSON E A,CORTES P, et al. Evaluation of surface treatments on 5052-H32 aluminum alloy for enhancing the interfacial adhesion of thermoplastic-based fiber metal laminates[J]. International Journal of Adhesion and Adhesives, 2018, 82:90-99.
- [10] CHI Y,GU G,YU H, et al. Laser surface alloying on aluminum and its alloys: A review[J]. Optics and Lasers in Engineering, 2018, 100:23-37.
- [11] KHODABAKHSHI F, GERLICH A P. Accumulative fold-forging (AFF) as a novel severe plastic deformation process to fabricate a high strength ultra-fine grained layered aluminum alloy structure[J]. Materials Characterization, 2018, 136:229-239.
- [12] OSÓRIO W R,GOULART P R,GARCIA A. Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al - Si alloys[J]. Materials Letters,2008,62(3):365-369.
- [13] ÖZTÜRK Ğ, AĞAOĞLU G A, ERZI E, et al. Effects of strontium addition on the microstructure and corrosion behavior of A356 aluminum alloy[J]. Journal of Alloys and Compounds, 2018, 763:384-391.
- [14] VERDALET-GUARDIOLA X, BONINO J-P, DULU-ARD S, et al. Influence of the alloy microstructure and surface state on the protective properties of trivalent chromium coatings grown on a 2024 aluminium alloy [J]. Surface and Coatings Technology, 2018, 344: 276-287.
- [15] GUO J, YUAN X. The aging behavior of SiC/Gr/ 6013Al composite in T4 and T6 treatments[J]. Materials Science and Engineering: A, 2009, 499 (1/2): 212-214.
- [16] BUDSARAKHAM P,RIYAPHAN C,CANYOOK R, et al. Effects of Cr on anodising and microstructure of cast aluminium alloys [J]. Materials Today: Proceedings,2018,5(3):9417-23.
- [17] ASHWATH P, JOEL J, PRASHANTHA KUMAR H G, et al. Processing and characterization of extruded 2024 series of aluminum alloy[J]. Materials Today: Proceedings, 2018, 5(5):12479-12483.
- [18] BACH L X, SON D L, PHONG M T, et al. A study on Mg and AlN composite in microstructural and electrochemical characterizations of extruded aluminum alloy [J]. Composites Part B: Engineering, 2019, 156: 332-343.
- [19] DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys[J]. Materials & Design (1980-2015),2014,56:862-871.

(责任编辑:米慧芝)