摘要: |
令G是一个有限群,P是一个固定奇素数.M<G表示M是G的真子群.记J2(G)={M:M<G,|G:M|非素数幂,且|G:M|p=1}.本文讨论当J2(G)的元皆为幂零群时G的结构. |
关键词: 有限群 幂零群 构造 |
DOI: |
投稿时间:1993-09-25 |
基金项目:国家自然科学基金 |
|
Finite Groups with a Class of Nilpotent Subgroups |
Li Shirong
|
(Guangxi University, Xixiangtang Road, Nanning, Guangxi, 530004) |
Abstract: |
Let G be a finite group and let p be an odd prime.We denote by M<G that M is a proper subgroup Of G. Put J2(G)={M:M<G,|G:M|is not a prime power and|G:M|p=1}.In this paper we investigate the structure of G if every element of J2(G) is nilpotent. |
Key words: finite group nilpotent group structure |