引用本文
  • 王升.关于二阶非齐次线性微分方程解的复振荡[J].广西科学,1996,3(4):65-68.    [点击复制]
  • Wang Sheng.On the Complex Oscillation of Solutions of Second Order Non-homogeneous Linear Differential Equations[J].Guangxi Sciences,1996,3(4):65-68.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 320次   下载 319 本文二维码信息
码上扫一扫!
关于二阶非齐次线性微分方程解的复振荡
王升
0
(西江大学数学系, 广东肇庆 526061)
摘要:
以Nevanlinna理论来研究方程f″+A(z)f'+B(z)f=F(z)的解的零点分布,其中A(z),B(z),F(z)≢0均为有穷增长级整函数。得出的主要结果是定理1和定理2。
关键词:  二阶非齐次线性微分方程  零点序列  收敛指数
DOI:
投稿时间:1996-06-03
基金项目:
On the Complex Oscillation of Solutions of Second Order Non-homogeneous Linear Differential Equations
Wang Sheng
(Dept. of Math., West River University, Zhaoqing, Guangdong, 526061)
Abstract:
Nevanlinna theory is used to investigate the zeros distribution of solutions of f″+A(z)f'+B(z)f=F(z), where A(z),B(z),F(z)≢0 are all entire functions of finite order of growth, and obtain Theorem 1 andTheorem 2.
Key words:  second order non-homogeneous linear differential equation  zero-sequence  exponent of convergcnce

用微信扫一扫

用微信扫一扫