引用本文
  • 刘焕文.解平行四边形板弯曲问题的二元B样条有限元法[J].广西科学,1998,5(1):15-19.    [点击复制]
  • Liu Huanwen.Finite Element Method with Bivariate B Splines in Solving a Bending Problem of Parallelogram Boards[J].Guangxi Sciences,1998,5(1):15-19.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 323次   下载 381 本文二维码信息
码上扫一扫!
解平行四边形板弯曲问题的二元B样条有限元法
刘焕文
0
(广西民族学院数学系, 南宁市西乡塘路 530006)
摘要:
将文献[1]以二元二次B样条函数为基底,求解矩形薄板弯曲问题的二元B样条有限元的方法推广到用于求解平行四边形板弯曲问题.结果表明:该方法系数矩阵每行的非零元仅21个,相对于朱明权和Chui C.K.等的张量积型样条有限元方法,计算量与存贮量都大大节约.
关键词:  平行四边形板  弯曲问题  二元B样条有限元
DOI:
投稿时间:1997-11-28
基金项目:广西区科委青年基金资助课题(批准号:9411006)。
Finite Element Method with Bivariate B Splines in Solving a Bending Problem of Parallelogram Boards
Liu Huanwen
(Dept. of Math., Guangxi Institute for Nationalities, Xixiangtanglu, Nanning, Guangxi, 530006)
Abstract:
A finite element method with bivariate B spline is given in[1] to solve a bending problem of rectangular boards based on the binary quadric B spline functions.we generalize the method to the case of parallelogram boards.It turns out that the method greatly reduces the computations and memory as comparied with the finite element method with splines of tensor product type of Zhu Mingquan and Chui C.K. etc.
Key words:  parallelogram boards  bending problem  finite element with bivariate B splines

用微信扫一扫

用微信扫一扫