引用本文
  • 卢景苹.一类微分系统无穷远点的中心和等时中心条件及极限环分支[J].广西科学,2010,17(4):311-315.    [点击复制]
  • LU Jing-ping.Conditions of Infinity to Be a Center and Isochronous Center and Bifurcation of Limit Cycles for a Differential System[J].Guangxi Sciences,2010,17(4):311-315.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 396次   下载 375 本文二维码信息
码上扫一扫!
一类微分系统无穷远点的中心和等时中心条件及极限环分支
卢景苹
0
(桂林电子科技大学数学与计算科学学院, 广西桂林 541004)
摘要:
用一个变换把系统无穷远点转化为原点,通过研究原点来研究无穷远点的性质,得到系统原点的奇点量和周期常数,中心和等时中心的充分必要条件及其极限环分支.
关键词:  多项式微分系统  无穷远点  中心  等时中心  极限环
DOI:
投稿时间:2010-01-09修订日期:2010-03-19
基金项目:国家自然科学基金项目(10961011);广西研究生科研创新项目(2009105950701M28)资助。
Conditions of Infinity to Be a Center and Isochronous Center and Bifurcation of Limit Cycles for a Differential System
LU Jing-ping
(School of Mathematics and Computational Science, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)
Abstract:
The conditions of infinity to be a center and isochronous center and bifurcation of limit cycles for a polynomial differential system are discussed. Infinity can be transferred into the origin by a transformation, and the behavior of system at infinity is investigated by using the methods of the origin. Using the computer algebra system-Mathematica, we compute the singular point values and the period constants at the origin, then give the sufficient and necessary conditions of infinity to be a center, an isochronous center and the bifurcation.
Key words:  polynomial differential system  infinity  center  isochronous center  limit cycle

用微信扫一扫

用微信扫一扫