引用本文: |
-
梁卓灵,元昌安,覃晓.基于方差优化谱聚类的热点区域挖掘算法[J].广西科学,2020,27(6):616-621. [点击复制]
- LIANG Zhuoling,YUAN Chang'an,QIN Xiao.Hot Region Mining Algorithm based on Variance Optimization Spectrum Clustering[J].Guangxi Sciences,2020,27(6):616-621. [点击复制]
|
|
摘要: |
为改善交通拥堵的情况,本文利用聚类分析方法对移动轨迹数据进行挖掘,识别居民出行的热点区域。传统的Ng-Jordan-Weiss (NJW)谱聚类算法常使用K-means聚类算法来实现最后的聚类操作,然而K-means聚类算法存在对初始值敏感、容易陷入局部最优的缺陷,影响对热点区域的挖掘结果。因此,本研究将方差优化初始中心的K-medoids聚类算法运用到谱聚类算法最后聚类阶段,提出基于方差优化谱聚类的热点区域挖掘算法(Hot Region Mining algorithm based on improved K-medoids Spectral Clustering,HRM-KSC),然后在真实的轨迹数据集上进行试验。试验结果发现,HRM-KSC算法聚类结果的轮廓系数更高,表明HRM-KSC算法改善了NJW谱聚类算法,提高了聚类质量。 |
关键词: K-medoids算法 谱聚类 热点区域 停留点 交通拥堵 |
DOI:10.13656/j.cnki.gxkx.20210119.003 |
|
基金项目:国家自然科学基金项目(61962006,61802035,61772091),广西科技开发项目(AA18118047,AD18126015)和广西自然科学基金项目(2018GXNSFDA138005)资助。 |
|
Hot Region Mining Algorithm based on Variance Optimization Spectrum Clustering |
LIANG Zhuoling1, YUAN Chang'an2, QIN Xiao3
|
(1.Guangxi University, Nanning, Guangxi, 530004, China;2.Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China;3.Nanning Normal Universety, Nanning, Guangxi, 530001, China) |
Abstract: |
In order to improve the traffic congestion,this article uses the cluster analysis approach to mine the mobile trajectory data and identify the hot region of residents' travel. The traditional Ng-Jordan-Weiss (NJW) spectral clustering algorithm often uses K-means clustering algorithm to achieve the final clustering operation. However,K-means clustering algorithm has the disadvantages of being sensitive to the initial value and easy to fall into the local optimum,which will affect the mining results of hotspot area. Therefore,the K-medoids clustering algorithm of variance optimization initial center is applied to the final clustering stage of the spectral clustering algorithm,and a Hot Region Mining algorithm based on improved K-medoids Spectral Clustering (HRM-KSC) is proposed,and then experiment on real trajectory data sets. The experiment results find that the HRM-KSC algorithm clustering results have higher silhouette coefficient,which indicates that the HRM-KSC algorithm improves the NJW spectral clustering algorithm and the clustering quality. |
Key words: K-medoids algorithm spectral clustering hot region stop point traffic congestion |