引用本文
  • 梁卓灵,元昌安,覃晓.基于方差优化谱聚类的热点区域挖掘算法[J].广西科学,2020,27(6):616-621.    [点击复制]
  • LIANG Zhuoling,YUAN Chang'an,QIN Xiao.Hot Region Mining Algorithm based on Variance Optimization Spectrum Clustering[J].Guangxi Sciences,2020,27(6):616-621.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 529次   下载 510 本文二维码信息
码上扫一扫!
基于方差优化谱聚类的热点区域挖掘算法
梁卓灵1, 元昌安2, 覃晓3
0
(1.广西大学, 广西南宁 530004;2.广西科学院, 广西南宁 530007;3.南宁师范大学, 广西南宁 530000)
摘要:
为改善交通拥堵的情况,本文利用聚类分析方法对移动轨迹数据进行挖掘,识别居民出行的热点区域。传统的Ng-Jordan-Weiss (NJW)谱聚类算法常使用K-means聚类算法来实现最后的聚类操作,然而K-means聚类算法存在对初始值敏感、容易陷入局部最优的缺陷,影响对热点区域的挖掘结果。因此,本研究将方差优化初始中心的K-medoids聚类算法运用到谱聚类算法最后聚类阶段,提出基于方差优化谱聚类的热点区域挖掘算法(Hot Region Mining algorithm based on improved K-medoids Spectral Clustering,HRM-KSC),然后在真实的轨迹数据集上进行试验。试验结果发现,HRM-KSC算法聚类结果的轮廓系数更高,表明HRM-KSC算法改善了NJW谱聚类算法,提高了聚类质量。
关键词:  K-medoids算法  谱聚类  热点区域  停留点  交通拥堵
DOI:10.13656/j.cnki.gxkx.20210119.003
基金项目:国家自然科学基金项目(61962006,61802035,61772091),广西科技开发项目(AA18118047,AD18126015)和广西自然科学基金项目(2018GXNSFDA138005)资助。
Hot Region Mining Algorithm based on Variance Optimization Spectrum Clustering
LIANG Zhuoling1, YUAN Chang'an2, QIN Xiao3
(1.Guangxi University, Nanning, Guangxi, 530004, China;2.Guangxi Academy of Sciences, Nanning, Guangxi, 530007, China;3.Nanning Normal Universety, Nanning, Guangxi, 530001, China)
Abstract:
In order to improve the traffic congestion,this article uses the cluster analysis approach to mine the mobile trajectory data and identify the hot region of residents' travel. The traditional Ng-Jordan-Weiss (NJW) spectral clustering algorithm often uses K-means clustering algorithm to achieve the final clustering operation. However,K-means clustering algorithm has the disadvantages of being sensitive to the initial value and easy to fall into the local optimum,which will affect the mining results of hotspot area. Therefore,the K-medoids clustering algorithm of variance optimization initial center is applied to the final clustering stage of the spectral clustering algorithm,and a Hot Region Mining algorithm based on improved K-medoids Spectral Clustering (HRM-KSC) is proposed,and then experiment on real trajectory data sets. The experiment results find that the HRM-KSC algorithm clustering results have higher silhouette coefficient,which indicates that the HRM-KSC algorithm improves the NJW spectral clustering algorithm and the clustering quality.
Key words:  K-medoids algorithm  spectral clustering  hot region  stop point  traffic congestion

用微信扫一扫

用微信扫一扫