引用本文
  • 谢承旺,韦伟,郭华,周慧.MOEA/ICD:一种基于适应度指标ICD的高维多目标进化算法[J].广西科学,2023,30(1):196-207.    [点击复制]
  • XIE Chengwang,WEI Wei,GUO Hua,ZHOU Hui.MOEA/ICD:A Many-objective Evolutionary Algorithm Based on Fitness Index ICD[J].Guangxi Sciences,2023,30(1):196-207.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 214次   下载 391 本文二维码信息
码上扫一扫!
MOEA/ICD:一种基于适应度指标ICD的高维多目标进化算法
谢承旺1,2, 韦伟1, 郭华1, 周慧3
0
(1.南宁师范大学计算机与信息工程学院, 广西南宁 530000;2.华南师范大学数据科学与工程学院, 广东汕尾 516600;3.华南师范大学商学院, 广东汕尾 516600)
摘要:
已有的基于参考点(参考向量)或标量化效用函数的多目标进化算法(Multi-Objective Evolutionary Algorithm,MOEA)在求解高维多目标优化问题(Many-objective Optimization Problems,MaOPs)时存在不足。基于此,本文提出一种动态度量解个体收敛性与多样性综合性能的适应度指标(Fitness indicator considering convergence and diversity of individual adaptively, ICD),该指标随进化过程的推进而自适应地调整种群个体的收敛性和多样性所占比例,即初期ICD强调收敛性而后期侧重多样性,以平衡高维多目标种群的收敛性和多样性,并获得高质量的解集。进一步地,将ICD嵌入NSGA-Ⅱ算法框架,设计一种基于ICD的高维多目标进化算法(Many-Objective Evolutionary Algorithm Based on ICD, MOEA/ICD)。最后,将新算法与5种代表性算法一同在DTLZ和MaF系列测试问题上进行反转世代距离(Inverted Generational Distance,IGD)性能测试。实验结果表明:相比5种对比算法,MOEA/ICD具有显著较优的收敛性和多样性。因此,MOEA/ICD是一种颇具前景的高维多目标进化算法(Many-Objective Evolutionary Algorithm,MaDEA)。
关键词:  高维多目标优化问题|进化算法|收敛性|多样性|适应度指标
DOI:10.13656/j.cnki.gxkx.20230308.021
基金项目:国家自然科学基金项目(61763010),广西自然科学基金项目(2021GXNSFAA075011)和广西研究生教育创新计划项目(YCSW2020194)资助。
MOEA/ICD:A Many-objective Evolutionary Algorithm Based on Fitness Index ICD
XIE Chengwang1,2, WEI Wei1, GUO Hua1, ZHOU Hui3
(1.School of Computer and Information Engineering, Nanning Normal University, Nanning, Guangxi, 530000, China;2.School of Data Science & Engineering, South China Normal University, Shanwei, Guangdong, 516600, China;3.School of Business, South China Normal University, Shanwei, Guangdong, 516600, China)
Abstract:
The existing Many-Objective Evolutionary Algorithms based on reference points (reference vectors) or scalar utility functions have shortcomings in solving Many-objective Optimization Problems.Based on this,a novel fitness index ICD that dynamically measured the comprehensive performance of individual convergence and diversity was proposed in this article.This index adaptively adjusted the proportion of convergence and diversity of population individuals as the evolutionary process progressed,that was,ICD emphasized the convergence in the early stage,and in the later stage,it focused on the diversity to balance the convergence and diversity of high-dimensional multi-objective populations and obtained high-quality solution sets.Furthermore,the ICD was embedded into the NSGA-Ⅱ algorithm framework to design a Many-Objective Evolutionary Algorithm based on ICD,which was MOEA/ICD.Finally,Inverted Generational Distance (IGD) performance tests were carried out on DTLZ and MaF series test problems with the new algorithm and five representative algorithms.The experimental results show that compared with the five comparison algorithms,MOEA/ICD has significantly better convergence and diversity.Therefore,MOEA/ICD is a promising Many-Objective Evolutionary Algorithm (MaOEA).
Key words:  Many-Objective|Optimization|Problems  evolutionary|algorithm  convergence  diversity  fitness|index

用微信扫一扫

用微信扫一扫