引用本文: |
-
俸亚特,徐正丽,文益民.基于UGC数据的旅游数据挖掘研究进展[J].广西科学,2024,31(1):87-99. [点击复制]
- FENG Yate,XU Zhengli,WEN Yimin.Research Progress in Tourism Data Mining Based on UGC Data[J].Guangxi Sciences,2024,31(1):87-99. [点击复制]
|
|
本文已被:浏览 306次 下载 649次 |
码上扫一扫! |
基于UGC数据的旅游数据挖掘研究进展 |
俸亚特1,2, 徐正丽3, 文益民1,4
|
|
(1.桂林旅游学院, 广西文化和旅游智慧技术重点实验室, 广西桂林 541006;2.桂林旅游学院旅游数据学院, 广西桂林 541006;3.桂林电子科技大学商学院, 广西桂林 541004;4.桂林电子科技大学计算机与信息安全学院, 广西桂林 541004) |
|
摘要: |
随着互联网和社交媒体的蓬勃发展,用户生成内容(User Generated Content,UGC)数据逐渐成为旅游大数据的重要组成部分。UGC数据能够体现游客旅游行为,数据类型丰富、真实性强、噪声大。本文回顾了过去几年旅游UGC数据研究的发展,分别从文本、照片、多模态3种数据类型角度进行综述,总结了近年来旅游UGC数据挖掘研究取得的成果,并探讨了未来研究的方向。 |
关键词: UGC 多模态 数据挖掘 旅游大数据 |
DOI:10.13656/j.cnki.gxkx.20240417.009 |
投稿时间:2023-10-21修订日期:2024-01-03 |
基金项目:国家自然科学基金项目(62366011),广西重点研发计划项目(桂科AB21220023),广西图像图形与智能处理重点实验室项目(GIIP2306),广西高校中青年教师科研基础能力提升项目(2023KY0850)和桂林市重点研发计划项目(20220115-1)资助。 |
|
Research Progress in Tourism Data Mining Based on UGC Data |
FENG Yate1,2, XU Zhengli3, WEN Yimin1,4
|
(1.Guangxi Key Laboratory of Culture and Tourism Smart Technology, Guilin Tourism University, Guilin, Guangxi, 541006, China;2.School of Tourism Data, Guilin Tourism University, Guilin, Guangxi, 541006, China;3.School of Business, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China;4.School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China) |
Abstract: |
With the vigorous development of the Internet and social media,User Generated Content (UGC) data has gradually become an important part of tourism big data.As an important data reflecting tourist behavior,UGC data has the characteristics of rich types,strong data authenticity,and large data noise.This article reviews the development of tourism UGC data research in the past few years,and summarizes the achievements of tourism UGC data mining research in recent years from the perspectives of text,photos,and multimodal data types,and discusses the direction of future research. |
Key words: UGC multimodality data mining tourism big data |