引用本文
  • 袁立宁,文竹,冯文刚,刘钊.基于自监督信息增强的图表示学习[J].广西科学,2024,31(2):323-334.    [点击复制]
  • YUAN Lining,WEN Zhu,FENG Wengang,LIU Zhao.Graph Representation Learning Enhanced by Self-supervised Information[J].Guangxi Sciences,2024,31(2):323-334.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 148次   下载 191 本文二维码信息
码上扫一扫!
基于自监督信息增强的图表示学习
袁立宁1,2, 文竹2, 冯文刚1, 刘钊3
0
(1.中国人民公安大学国家安全学院, 北京 100038;2.广西警察学院信息技术学院, 广西南宁 530028;3.中国人民公安大学研究生院, 北京 100038)
摘要:
针对图表示学习模型依赖具体任务进行特征保留以及节点表示的泛化性有限等问题,本文提出一种基于自监督信息增强的图表示学习模型(Self-Variational Graph Auto Encoder,Self-VGAE)。Self-VGAE首先使用图卷积编码器和节点表示内积解码器构建变分图自编码器(Variational Graph Auto Encoder,VGAE),并对原始图进行特征提取和编码;然后,使用拓扑结构和节点属性生成自监督信息,在模型训练过程中约束节点表示的生成。在多个图分析任务中,Self-VGAE的实验表现均优于当前较为先进的基线模型,表明引入自监督信息能够增强对节点特征相似性和差异性的保留能力以及对拓扑结构的保持、推断能力,并且Self-VGAE具有较强的泛化能力。
关键词:  自监督信息  图表示学习  图变分自编码器  图卷积网络  对比损失
DOI:10.13656/j.cnki.gxkx.20240619.013
投稿时间:2024-01-22修订日期:2024-02-18
基金项目:国家重点研发计划项目(2023YFC3321604),中央高校基本科研业务费专项资金项目(2022JKF02002),广西法学会法学研究课题(GFKT2023-C3)和广西哲学社会科学研究课题(23FTQ005)资助。
Graph Representation Learning Enhanced by Self-supervised Information
YUAN Lining1,2, WEN Zhu2, FENG Wengang1, LIU Zhao3
(1.School of National Security, People's Public Security University of China, Beijing, 100038, China;2.School of Information Technology, Guangxi Police College, Nanning, Guangxi, 530028, China;3.Graduate School, People's Public Security University of China, Beijing, 100038, China)
Abstract:
Graph representation learning models rely on specific task to preserve features,and the generalization of node representations are limited.Aiming at the above problems,a graph representation learning model Self-Variational Graph Auto Encoder (Self-VGAE) enhanced by self-supervised information is proposed in this article.Firstly,graph convolutional encoder and node representation inner product decoder are used to construct a VGAE. The feature extraction and coding of the original graph are performed.Then,the topology and node attributes are used to generate self-supervised information,and the generation of node representation is constrained during model training.In multiple graph analysis tasks,the experimental performance of Self-VGAE is better than the current more advanced baseline model,which shows that the introduction of self-supervised information can enhance the ability to retain the similarity and difference of node features and the ability to maintain and infer the topology.Furthermore,Self-VGAE has a stronger generalization ability.
Key words:  self-supervised information  graph representation learning  graph variational auto encoders  graph convolutional networks  contrastive loss

用微信扫一扫

用微信扫一扫