5 个 Van der Waerden 数 W(3,q) 的准确值* Five Accurate Values for the Van der Waerden Number W(3,q)

苏文龙1,罗海鹏2,黎贞崇2,何建东2

SU Wen-long¹, LUO Hai-peng², LI Zhen-chong², HE Jian-dong²

- (1. 广西大学梧州分校,广西梧州 543002;2. 广西科学院,广西南宁 530022)
- (1. Guangxi University Wuzhou Branch, Wuzhou, Guangxi, 543002, China; 2. Guangxi Academy of Sciences, Nanning, Guangxi, 530022, China)

摘要:使用 3 个算法,给出 5 个 Van der Waerden 数 W(3,q) 的准确值:W(3,4) = 18, W(3,5) = 22, W(3,6) = 32, W(3,7) = 46, W(3,8) = 58.

关键词:Van der Waerden 数 n-部分拆 下界 上界 准确值

中图法分类号:0157.5;TP312 文献标识码:A 文章编号:1002-7378(2006)03-0141-07

Abstract: Three algorithms are used, and five accurate values for Van der Waerden number W(3,q) are obtained as follows: W(3,4) = 18, W(3,5) = 22, W(3,6) = 32, W(3,7) = 46, W(3,8) = 58.

Key words: Van der Waerden number, n- partition, lower bound, upper bound, accurate value

1 本文的主要结果

定义 1 Van der Waerden 数是具有下述性质的最小正整数 w: 给定 $n \ge 2$ 个正整数 k_1, k_2, \dots, k_n ,在自然数集 $[w] = \{1, 2, \dots, w\}$ 的任意 n- 部分拆 $\pi_n([w]) = \{S_1, S_2, \dots, S_n\}$ 中,必有一个子集 $S_i(1 \le i \le n)$ 含 k_i 个元素构成的等差数列.

Van der Waerden 定理 $[1^{-3}]$ 证明了上述正整数 w 的存在性. 我们记这样的 Van der Waerden 数为 $W(k_1,k_2,\cdots,k_n)$. 特别地,当 $k_1=k_2=\cdots=k_n=k$ 时,一般的文献都记为 W(k,n). 在这里,我们参照 文献[4]中关于 Ramsey 数的记法,简记为 $W_n(k)$.

Van der Waerden 定理是 Ramsey 理论的重要组成部分, Van der Waerden 数的计算也是组合数学中非常困难的问题. 虽然迄今尚未见到学术界在Ramsey 数的计算方面有取得重大突破的迹象,但探

索小 Ramsey 数的准确值及其上、下界却是学术界的一个热门课题,迄今记录小 Ramsey 数研究成果的动态综述论文^[4]已更新至#10版.关于小 Van der Waerden 数的研究,理应像 Ramsey 数那样获得学术界的重视,但实际上其研究进展却极其缓慢. 迄今已知的非平凡的小 Van der Waerden 数的准确值只有如下 5 个,并且都是 $W_n(k)$ 类型的: $W_2(3)$ = $9,W_2(4)$ = $35,W_2(5)$ = $178,W_3(3)$ = $27,W_4(3)$ = 76

对于 $W_2(k)$ 的界,文献[3] 收录有如下公式:

$$\begin{split} W_{\scriptscriptstyle 2}(k) \geqslant & \frac{2^k}{2ek} - \frac{1}{k}. \\ W_{\scriptscriptstyle 2}(k) \leqslant & T(2W_{\scriptscriptstyle 2}(k-1)). \end{split}$$

其中 T(n) 称为 2 的塔幂函数,定义为 T(1) = 2, $T(n) = 2^{T(n-1)}$.

R. L. Graham [2] 猜想 $W_2(k) \leq T(k)$. 即使这一猜想获得证实,由于 T(n) 的递增速度远超过指数函数,因而 $W_2(k)$ 的这个上界和已知的准确值或下界比较起来相差极大. 例如 $T(3) = 2^4 = 16 > W_2(3) = 9$, $T(4) = 2^{16} = 65536 > W_2(4) = 35$, 而 $T(5) = 2^{65536}$ 则远远大于 $W_2(5) = 178$. Van der Waerden 定理中肯定其存在的数 $W_2(k)$ 的定量性质仍然是对数

收稿日期:2005-01-12

作者简介:苏文龙(1947-),男,广西梧州人,研究员,主要从事组合数 学与算法研究工作。

^{*} 国家自然科学基金(60563008)、广西自然科学基金项目(桂科自0640037)、梧州市科研基金资助项目(梧科字[2005]第35号)资助。

学家的一大挑战[3].

至于 $k_1 \neq k_2$ 的小 Van der Waerden 数 $W(k_1, k_2)$ 的准确值或其上下界,迄今尚未见有文献报道,本文 的主要结果是

定理 1 W(3,4) = 18, W(3,5) = 22, W(3,6)

= 32, W(3,7) = 46, W(3,8) = 58.这些结果是本文首次报道的.

2 计算 $W(k_1,k_2)$ 下界的算法

定义2 给定整数 $\rho \geqslant 5$ 与自然数集 $\lceil \rho \rceil = \{1, \}$

 $\{2, \dots, p\}$ 的 2- 部分拆 $\pi_2([p]) = \{S_1, S_2\}$,其中 S_1 与

 S_2 均非空集. 对于任一 $a_i \in S_i$,如果在 S_i 中最多有 l

 \geqslant 3个数 $a_i < a_{i+1} < \cdots < a_{i+l-1}$ 构成一个等差数列,

我们就记为 $l_i(a_i) = l$. 约定,如果以 a_i 为首项的等差 数列不存在,那么当 $|S_i| = 1$ 时令 $l(a_i) = |S_i|$,当

 $|S_i| \geqslant 2$ 时令 $l(a_i) = 2$. 令 $l(S_i) = \max\{l(a_i) | a_i \in$ S_i } 并称之为 S_i 的赋值.

显然,对于任意非空数集 $S_i \subset [p]$ 以及任一 a_i $\in S_i$, $l(a_i)$ 与 $l(S_i)$ 都是明确定义的. 根据定义 1 与

定义 2,显然有 定理 2 对于数集[p]的一个 2- 部分拆

 $\pi_2([p]) = S_1 \cup S_2$,如果 $c_1 = l(S_1)$, $c_2 = l(S_2)$,则有 $W(c_1+1,c_2+1) \geqslant p+1$. //

据此,我们有

算法 1 该算法是计算 $W(k_1,k_2)$ 下界的算法,

步骤如下: 步骤 1:给定整数 $p \ge 5$ 与参数集 $S_1 \subset [p]$. 令

i = 1.

步骤 2:如果 $s = |S_i| \le 2$,令 $c_i = s$,转到步骤 7; 否则, 把 S_i 中的元素按从小到大的顺序排列: a_1

 $a_2 < \cdots < a_s$,作成全序集 $(S_i, <)$. 令 $c_i = 0, j = 1$. 步骤 3: 令 $d = a_{i+1} - a_i$, $a = d + a_{i+1}$, $k = j + a_{i+1}$

步骤 4:如果 $a = a_k$,令 c = c + 1,a = a + d,k

= k + 1. 如果 $k \le s$,转到步骤 4. 步骤 5:如果 $c_i < c$,令 $c_i = c$.如果 $c \ge 3$,打印

首项为 a_i 公差为d的c项等差数列. 步骤 6: 令 j = j + 1,如果 $j \le s - 2$,转到步骤

3.

步骤 $7: \diamondsuit l(S_i) = c_i$. 步骤 8:令 i = i + 1. 如果 i = 2,令 $S_2 = [p]$ —

S₁转到步骤 2. 步骤 9:打印 $W(c_1+1,c_2+1) \geqslant p+1$. 运算 结束.

在算法 1 中,由步骤 4 输出的 c 便是 a_i 的赋值

 $l(a_i)$,进入算法步骤 7中的 c_i 便是 S_i 的赋值 $l(S_i)$. 在 步骤 5 中,如果 $c \ge 3$,那么打印出来的首项为 a_i 公

差为 d 的 c_i 项等项数列是全序集 $(S_i, <)$ 中第一个 长为 c_i 的等差数列.

容易看出,步骤 7 给出的 $l(S_i) = c_i$ 便是 S_i 的赋 值. 以下在引用算法 1 的步骤 2 至步骤 7 计算 $l(S_i)$

时,简称"计算 $l(S_i)$ ". 例 1 令 p = 5, $S_1 = \{1, 2, 4, 5\}$,则 $S_2 = [5]$

 $-S_1 = \{3\}$,由算法1得到 $c_1 = l(S_1) = 2$, $c_2 = l(S_2)$

= 1,据定理 2 有 $W(3,2) \ge 6$.

不难证明,对于数集[6]的任意 2- 部分拆 $\pi_2([6]) = \{S_1, S_2\},$ 都有 $l(S_1) \geqslant 3$ 或者 $l(S_2) \geqslant 2$, 故有 $W(3,2) \leq 6$. 即得 W(3,2) = 6.

我们以这个结论为起点,在假设已知 $W(k_1,$ (k_2-1) 的情况下,探索 $W(k_1,k_2)$ 的下界、上界和准 确值.

3 *P* 的子集

给定整数 $k_2 \geqslant k_1 \geqslant 3$,以及 $p > W(k_1, k_2 - 1)$. 记[p] 的所有非空真子集的集为 P. 据 $W(k_1,k_2)$ 的

定义,显然有 引理 1 如果对于任意 $S_1 \subset P$ 与 $S_2 = [p]$ — S_1 ,都有 $l(S_1) \geqslant k_1$ 或者 $l(S_2) \geqslant k_2$,那么 $W(k_1,k_2)$

注意到 $|P| = 2^p - 2$, 当 p 稍大时 |P| 就已很 庞大了,因此据引理 1 求 $W(k_1,k_2)$ 的上界是很困难 的. 在此,我们用 P 的子集取代引理 1 中的 P.

定义3 设 $S_1 = \{a_1, a_2, \dots, a_s\} \in P,$ 称 $|S_1| =$

s 为 S_1 的长度, $\pi_j(S_1) = \max\{a_{i+1} - a_i | 0 \le j \le s\}$

为 S_1 的步长. 这里 $a_1 < a_2 < \dots < a_s$,并约定 $a_0 = 0$, $a_{s+1} = p + 1$.

定义 4 对于数集 $[\rho]$ 的任意一个 2- 部分拆 $\pi_2([p]) = S_1 \cup S_2$,设 $a \in S_2$,令 $S_i^* = S_i \cup \{a\}$,

 $S_2^* = S_2 - \{a\},$ 称为从 $\pi_2(\lceil p \rceil) = S_1 \cup S_2$ 到 $\pi_2(\lceil p \rceil) = S_i^* \cup S_2^*$ 的一次调整,简称为对 S_i 增加长

度的调整.

显然,增加 S_1 的长度,不会减小其赋值,也不会 增大其步长,并且不会增大 S_2^* 的赋值. 即有 $l(S_1^*)$ $\geqslant l(S_1), j(S_1^*) \leqslant j(S_1), l(S_2^*) \leqslant l(S_2).$ 容易证明 引理 2 如果 $S_1 \in P$ 满足 $l(S_1) \leq k_1 - 1$ 并且

可作增加长度的调整使 $l(S_1^*)$ 达到或者保持为 k_1 — 1,那么这样的调整只可作有限次,此后的任何增加 长度的调整都会使 $l(S_1^*) > k_1 - 1$. // 定义 $\mathbf{5}$ 对于任意 $S_1 \in P$, $S_i \in G$ 当且仅当它满足条件 $(1) \ j(S_1) \leqslant k_2;$ $(2) \ l(S_1) = k_1 - 1$, 并且对 S_1 的任何增加长度的调整都会增加其赋值. 即对于任何 $a \notin S_1$, $\Leftrightarrow S_i^*$

 $S_i \cup \{a\}$,都有 $l(S_1^*) > l(S_1)$. 引理 3 如果对于任意 $S_1 \in G$,数集 $S_2 = [p]$ — S_1 的赋值 $l(S_2) \geqslant k_2$,那么对于 [p] 的任一 2- 部分

 $egin{align*} & \pi_2(\lceil p \rceil) = S_1 \cup S_2,$ 必有 $l(S_1) \geqslant k_1$ 或者 $l(S_2) \geqslant k_2$. 证明 用反证法. 如若不然,假设存在 $\pi_2(\lceil p \rceil)$

 $= S_1 \cup S_2$ 使 $l(S_1) \le k_1 - 1$ 并且 $l(S_2) \le k_2 - 1$,则由引理 2 的给定条件可知 $S_1 \in G$. 有如下情形: i) S_1 满足定义 5 的条件(2) 而不满足条件(1),即 $j(S_1) \ge k_2 + 1$. 那么,至少有一个 j(其中 $0 \le j \le 1$

-1],则 $C \subset S_2$,并且数集C中的 |C| 个数构成公差为 1 的等差数列,故有 $l(S_2) \geqslant |C| = (a_{j+1} - 1) - (a_j + 1) + 1 =$

s) 满足 $a_{i+1} - a_i \geqslant k_2 + 1$,此时令 $C = [a_i + 1, a_{i+1}]$

 $(a_{j+1}-a_j)-1\geqslant (k_2+1)-1=k_2$. 这与假设的 $l(S_2)\leqslant k_2-1$ 矛盾.

ii) S_1 满足定义 5 的条件(1) 而不满足条件(2),即 $j(S_1) \leq k_2$, $l(S_1) \leq k_1 - 1$,并且对 S_1 可作增加长度的调整使 $l(S_1^*) \leq k_1 - 1$.

据引理 2,对 S_1 作有限次增加长度的调整,由 2-部分拆 $\pi_2(\lceil p \rceil) = S_1 \cup S_2$ 得到 $\pi_2(\lceil p \rceil) = S_1^* \cup S_2^*$ 时,可使 $l(S_1^*) = k_1 - 1$ 并且有 $j(S_1^*) \leqslant j(S_1) \leqslant k_2$, $l(S_2^*) \leqslant l(S_2) \leqslant k_2 - 1$. 此后对 S_1^* 的任何增加长度

 $l(S_2^*) \leq l(S_2) \leq k_2 - 1$. 此后对 S_1^* 的任何增加长度的调整都会增加其赋值,于是 S_1^* 满足定义 S_1^* 的两个条件,即 $S_1^* \in G$. 由引理 S_1^* 的给定条件可知 S_2^* 0 S_2^* 1 S_2^* 2 S_2^* 3 S_2^* 3 S_2^* 4 S_2^* 5 S_2^* 6 S_2^* 7 S_2^* 6 S_2^* 7 S_2^* 7 S_2^* 8 S_2^* 9 S_2^* 9

iii) S_1 不满足定义 5 的两个条件. 此时可对 S_1 作有限次增加长度的调整,注意到 $l(S_1^*) \geqslant l(S_1)$, $j(S_1^*) \leqslant j(S_1)$,总可使 S_1^* 满足定义 5 的两个条件之一. 仿上述讨论,即可导致矛盾.

综上述,引理 3 得证. // 显然有 $G \subset P$. 容易证明,对于 $G^* \subset G$,用 G^*

此集 G 是使引理 3 成立的 P 的子集中的阶数最小者. 但容易证明,任何包含 G 作为子集的集都可取代引理 2 中的集 G,即得

取代引理 3 中的 G,不能肯定得到引理 3 的结论. 因

H,数集 $S_2 = [p] - S_1$ 的赋值 $l(S_2) \geqslant k_2$,那么对于 [p] 的任一 2- 部分拆 $\pi_2([p]) = S_1 \cup S_2$,必有 $l(S_1)$

 $\geqslant k_1$ 或者 $l(S_2) \geqslant k_2$. // 在全序集($\lceil \rho \rceil$, \prec) 中,P 的元可由 $\lceil \rho \rceil$ 的子集

按 通常的字典排列法作出并且进行排序,第 j 个元记为 P_j . 以下约定 P 及其一切子集(例如下述的 A、B、H、G) 的元都按字典排列法排序,其中第 j 个元

定义 6 对于任意 $S_1 \in P, S_i \in A$ 当且仅当它

以下标 j 记之. 易知 $P_1 = \{1\}$, $P_{|P|} = \{p\}$. 注意到,虽然定义 5 明确定义了集 G,但在实际

操作中构造集 G 时,要对每个 $S_1 \in P$ 都判断是否 "对 S_1 的任何增加长度的调整都会增加其赋值" 却遇到很大的运算量. 采用操作简便的逐步逼近法构造一个包含集 G 的集 H,可以减小运算量.

满足条件 $(1) j(S_1) \leqslant k_2;$

(2) $l(S_1) = k_1 - 1$. 显然 $G \subset A \subset P$,并且 A 中有许多不属于 G 的

元. 例如,给定 $k_1 = 3$, $k_2 = 7$, p = 46,则 A 中前几个元是 $A_1 = \{1,2,4,5,10,12,17,21,26,27,34,36,$

39,43},

 $A_2 = \{1,2,4,5,10,12,17,21,26,27,34,39,43\},$

 $A_3 = \{1,2,4,5,10,12,17,21,26,27,34,39,43,45\},$

 $A_4 = \{1,2,4,5,10,12,17,21,26,27,34,39,43,45,46\},$

 $A_5 = \{1,2,4,5,10,12,17,21,26,27,34,39,21\}$

 $A_6 = \{1,2,4,5,10,12,17,21,26,27,34,39,$

43,46 }. 我们只须比较 A 中相继的两个元 A_i 与 A_{i+1} ,就可以用简单的方法淘汰这些明显不属于 G 的元. 例

如上述 A_2 与 A_3 比较,由 A_2 \bigcup {45} = A_3 可知,对 A_2

作增加长度的调整可得到 A_3 ,故有 $A_2 \in G$,于是就可淘汰 A_2 . 类似地, A_3 与 A_4 比较, $A_3 \in G$,可淘汰 A_3 . A_5 与 A_6 比较, $A_5 \in G$,可淘汰 A_5 . 让 i 从 1 跑过 |A|-1,淘汰那些不属于G的元 A_i . 最后,把A中未

被淘汰的元依次编号,就得到 B. 一般地,我们有 定义 7 考察 A 中相继的两个元,如果 $|A_i|$ =

 $|A_{i+1}| - 1$ 并且 $A_i = \{a_1, a_2, \dots, a_s\}, A_{i+1} = \{a_1, a_2, \dots, a_s, a_{s+1}\},$ 其中 $1 \leqslant i \leqslant |A| - 1$,那么就淘汰 A_i .

把 A 中所有未被淘汰的元作成集 B.

里 2 中的集 G,即得 引理 $\mathbf{4}$ 设 $G \subset H \subset P$,如果对于任意 $S_1 \in$

显然 $G \subset B \subset A$,并且 B 中还有许多不属于 G的元. 例如,给定 $k_1 = 3, k_2 = 7, p = 46, \text{则 } B$ 中前几

39,43},

 $B_2 = \{1,2,4,5,10,12,17,21,26,27,34,39,$

43,45,46},

 $B_3 = \{1,2,4,5,10,12,17,21,26,27,34,39,$

43,46},

 $B_4 = \{1,2,4,5,10,12,17,21,26,27,34,39,$

45,46}, $B_5 = \{1,2,4,5,10,12,17,21,26,27,34,39,$

46}, $B_6 = \{1,2,4,5,10,12,17,21,26,28,34,36,$

43,45}.

其中 B_3 , B_4 , B_5 就不属于 G. 我们只须比较 B 中 相继的两个元,就可以用简单的方法淘汰这些不属 于 G 的元. 例如上述 B_2 与 B_3 比较,显然 $B_3 \in G$,可 以淘汰 B_3 . B_2 与 B_4 比较,显然 $B_4 \in G$,可淘汰 B_4 . B_2

属于G的元后,把B中未被淘汰的元依次编号,就得 到 H. 一般地,我们有 定义 8 在 B 中依次考察的两个元,设 $B_i =$

与 B_5 比较,显然 $B_5 \in G$,可淘汰 B_5 .淘汰那些明显不

 $\{a_1, a_2, \cdots, a_r\}, B_{i+t} = \{b_1, b_2, \cdots, b_s\}$. 下述条件(1) ~ (7) 称为淘汰条件. 按下述算法 2 由集 B 构造数集 Η.

(1) $r = s + 1, a_i = b_i (j \in [1, s - 1])$ 并且 $a_r =$

(2) $r = s + 1, a_i = b_i (j \in [1, s - 2])$ 并且 $a_{r-1} = b_{s-1}, a_r = b_s.$

(3) $r = s + 1, a_i = b_i (j \in [1, s - 3])$ 并且

 $a_{r-2} = b_{s-2}, a_{r-1} = b_{s-1}, a_r = b_s.$ (4) r = s + 2, $a_i = b_i (j \in [1, s - 1])$ 并且 $a_r = a_i$

(5) r = s + 2, $a_i = b_i (j \in [1, s - 2])$ 并且 $a_{r-1} = b_{s-1}, a_r = b_s.$

(6) $r = s + 2, a_i = b_i (j \in [1, s - 2])$ 并且 $a_{r-2} = b_{s-1}, a_r = b_s.$

(7) r = s + 3, $a_i = b_i (j \in [1, s - 1])$ 并且 $a_r = a_r = a_r$

该算法是由集B构造集H的算法,步 骤如下.

步骤 1:给定 P 的子集 B. 令 i = 1, k = 0.

步骤 2:设 $B_i = \{a_1, a_2, \dots, a_r\}, \diamondsuit t = 1, k = k + 1$

 $1, H_k = B_i$. 如果 i = |B|,转到步骤 5. 步骤 3:设 $B_{i+t} = \{b_1, b_2, \dots, b_s\}$,如果 $B_i \ni B_{i+t}$

符合淘汰条件之一,令 t = t + 1,转到步骤 3.

步骤 4: 令 i = i + t,如果 $i \leq |B|$,转到步骤 2.

步骤 5.运算结束.

定义8与算法2只须比较B中相继(Bit 被淘汰 后, B_{i+t+1} 就视为 B_i 的后继元)的两个元,其优点是

简单、快捷,用计算机运算时占用内存少. 缺点是淘

汰得不够充分,故有 |G| > |H|,即由定义 8 不能淘

 λB 中所有不属于 G 的元. 改进的方法是在定义 δ 中增加一些合理的淘汰条件,可以让所得到的H进 一步逼近 G,此时 H 仍然使引理 3 成立. 不过,增加

间,但却增加了判断淘汰条件的执行时间,甚至不必 淘汰的情形也要进行判断. 因此这种改进未必能提 高运算效率. 显然 $G \subset H \subset B$. 由上述 $A \setminus B \setminus H$ 的构造方法,

淘汰条件虽然使 |H| 减小而节约了计算 $l(S_2)$ 的时

引理 5 $G \subset H \subset B \subset A \subset P$.

我们有

4 计算 $W(k_1,k_2)$ 上界的算法

由引理 4、引理 5 与定义 1 即得 定理3 设H是满足条件 $G \subset H \subset P$ 的集,如

果对于任意 $S_1 \in H$,数集 $S_2 = \lceil p \rceil - S_1$ 的赋值 $l(S_2) \geqslant k_2$,那么 $W(k_1,k_2) \leqslant p$. //

据引理 5 和定理 3,我们有如下计算 Van der Waerden 数 $W(k_1,k_2)$ 上界的算法. 注意到,集P可由 \$[p]的所有非空真子集按照字典排列法作出,集 $A \setminus B \setminus H$ 可由定义 $6 \setminus 7 \setminus 8$ 的规定构造,它们都不难操 作,因此在下述算法3中我们省略它们构造方法与 构造过程的描述.

该算法是计算 $W(k_1,k_2)$ 上界的算法, 算法3 步骤如下:

步骤 1:给定整数 $k_2 \geqslant k_1 \geqslant 3$,以及 $p > W(k_1, k_2)$ $k_2 - 1$). $\diamondsuit h = 1$.

步骤 2:按照字典排列法构造数集 $\lceil \rho \rceil$ 的非空真 子集的集P.

步骤 3.据定义 6 构造集 A. 步骤 4.据定义 7 构造集 B.

步骤 5:据定义 8 构造集 H. 设集 H 的第 h 个元 记为 H_{h} .

步骤 $6: \diamondsuit S_1 = H_h, S_2 = \lceil p \rceil - S_1,$ 计算 $l(S_2)$. 步骤 7:如果 $l(S_2) < k_2$,打印 $W(k_1, l(S_2) + 1)$ $\geqslant p+1$. 令 p=p+1,转到步骤 2. 步骤 8: 令 h = h + 1. 如果 $h \leq |H|$,转到步骤 5.

步骤 9:打印 $W(k_1,k_2) \leq p$. 运算结束.

实际上,在上述步骤2至步骤5由集P开始构 造集 $A \setminus B \setminus H$ 的过程中,每确定 H 的一个元 H_{b} ,就

立刻进入步骤6至步骤8的运算过程,不必等到集

H 的元全部确定完毕后才进入步骤 6 (即算法 1 的步 骤 2 至步骤 7),这就节省了计算机的存储空间和数

组 H_i 的存、取时间. 在算法 3 的步骤 1 中,给定整数 k_1, k_2 与 p 的三

种情形,有如下结果.

情形 $I:W(k_1,k_2-1) . 注意$ 到定理3的逆否命题也成立,即

"设 H 是满足条件 $G \subset H \subset P$ 的集. 如果 $W(k_1,k_2) > p$,那么存在一个 $S_1 \in H$,使数集 $S_2 =$

 $[\rho] - S_1$ 的赋值 $l(S_2) < k_2$."对此作如下分析. 首先,据 H 的定义可知,当 $S_1 \in H$ 时有

 $l(S_1) = k_1 - 1.$ 其次,据定义1可知, $W(k_1,k_2-1) < p$ 给出:

 $l(S_1) \geqslant k_1$ 或者 $l(S_2) \geqslant k_2 - 1$. 特别地,当 $l(S_1) =$ $k_1 - 1$ 时只能有 $l(S_2) \ge k_2 - 1$.

因此,综合上述逆否命题说的"存在一个 $S_1 \in$ H,使数集 $S_2 = [p] - S_1$ 的赋值 $l(S_2) < k_2$ (即

 $l(S_2) \leq k_2 - 1$)",就只能有 $l(S_2) = k_2 - 1$. 于是据定理 2 得到一个下界 $W(k_1,k_2) \geqslant \rho$ +

1. 此时在步骤 7 中令 p = p + 1,然后转到步骤 2 继 续计算 $W(k_1,k_2)$ 的上界. 经过有限次从步骤 7 转到

归结到情形 Ⅱ. 情形 $\mathbb{I}_{:p} = W(k_1, k_2)$. 此时算法 3 的变量 h 从

步骤 2 的运算过程, ρ 值增加到 $W(k_1,k_2)$ 的时候,就

1 跑过 |H| 而进入步骤 9,我们就证明了:对于每个 $S_1 \in H$,集 $S_2 = [p] - S_1$ 的赋值 $l(S_2) \geqslant k_2$.据定理

3 即得 $W(k_1,k_2) \leq p$. 于是算法 3 确定了 $W(k_1,k_2)$ 的准确值.

情形 $\mathbb{I}_{:p} > W(k_1,k_2)$. 此时不存在 $S_1 \in H$, 使 数集 $S_2 = [p] - S_1$ 的赋值 $l(S_2) < k_2$. 因此在算法 3 中步骤 7 的条件不能满足,变量 h 从 1 跑过 |H| 而 进入步骤 9,我们就得到一个上界 $W(k_1,k_2) \leq \rho$. 但

例 2 已知 W(3,2) = 6, 我们计算 W(3,3). 给

定整数 $k_1 = 3, k_2 = 3, p = 7.$ 则 $H = \{\{1,2,4,5\},\dots\}. \Leftrightarrow S_1 = H_1 = \{1,2,4,$

 $\{5\}$,即得 $\{l(S_2)=2\}$ 据定理 $\{2\}$ 有 $\{W(3,3)\}$

这不是上确界,此时算法 3 不能得到准确值.

3 的 7° 给出 $\rho = 8$,转到 2° 继续计算 W(3,3) 的上界. 此时

 $H = \{\{1,2,5,6\},\cdots\}. \Leftrightarrow S_1 = H_1 = \{1,2,5,$ 6},即得 $l(S_2) = 2$,据定理 $2 \in W(3,3) \ge 9$. 由算法

3 的步骤 7 给出 $\rho = 9$,转到步骤 2 继续计算 W(3,3)

的上界. 此时 $H = \{\{1,2,5,7\}, \{1,3,6,7\}, \{1,4,5,8\}, \{1,4$

4,6,9, $\{2,3,6,7\}$, $\{2,4,5,7\}$, $\{2,4,7,8\}$, $\{2,5,6,4,6,9\}$ 9}, $\{2,5,7\}$, $\{3,4,6,7\}$, $\{3,4,7,8\}$, $\{3,5,6,8\}$, $\{3,5,6,8\}$

5,8,9},{3,6,7}}. 这里 |H| = 14. 由算法 3 得到:对于任一 $h \in$ [1,14],令 $S_1 = H_h$, $S_2 = [9] - S_1$,都有 $l(S_2) \geqslant$

7 \}.

 $k_2 = 3$,据定理 3 有 $W(3,3) \leq 9$. 综上述即得 W(3,3) = 9,简记为 $W_2(3) = 9$,

即文献 $[1 \sim 3]$ 说的W(3,2) = 9. 在例2 + 9. $3,k_2=3,p=9$ 时,H 有 14 个元,其中 $a_1=1$ 的有 $4 \land , a_1 = 2$ 的有 $5 \land , a_1 = 3$ 的有 $5 \land .$ 我们把这种

情况记为 |H| = 14(4,5,5),以下仿此.

顺便指出,在例 2 中当 $k_1 = 3, k_2 = 3, p = 9$ 时 有 B = H 而 $G = H - \{\{2,5,7\},\{3,6,7\}\}$. 但我们 不能象定义 8 那样,用简单快捷的方法(仅比较相继 的两个元) 在B中淘汰不属于G的 $\{2,5,7\}$ 与 $\{3,6,6\}$

注意到,数集[9]的非空真子集有 $2^9 - 2 = 510$ 个,相应地 $\lceil 9 \rceil$ 的 2-部分拆 $\pi_2(\lceil 9 \rceil) = S_1 \cup S_2$ 有 510 种情形. 用引理 1 对每种情形都计算 $l(S_1)$ 与 $l(S_2)$ 是不胜其烦的. 在例 2 中我们只须考察 14 种情形就 可以了. 在以下关于 $W(3,8) \leq 58$ 的证明中,我们只 须考虑 $|H| = 1.7 \times 10^7$ 种情形,这 1.7 × 107 远小 于 $|P| = 2^{58} - 2 = 2.8 \times 10^{17}$. 可见我们的算法具 有较高的运算效率.

定理 1 的证明 5

在证明定理1的结论时,为了简便,我们不是像 例 2 那样从 W(3,q-1)+1 开始,就每个 W(3,q)用算法 3 确定其下界、上界与准确值, 而是用算法 1 和算法 3 确定分别一批 W(3,q) 的下界和上界,并 在计算下界时写出全序集 $(S_2, <)$ 中的第一个最长 的等差数列. 据算法 1,我们有

引理 6 $W(3,4) \geqslant 18, W(3,5) \geqslant 22,$ $W(3,6) \geqslant 32, W(3,7) \geqslant 46, W(3,8) \geqslant 58.$

14}, $\mathbb{N} S_2 = \lceil 17 \rceil - S_1 = \{1, 2, 3, 6, 8, 9, 10, 13, 15, \dots \}$

(1) 令 $k_1 = 3, k_2 = 4, p = 18$. 则从定义 6 到定

22.

 $\{16,17\}$,由算法 1 得到 $\{c_1=l(S_1)=2\}$, $\{c_2=l(S_2)=1\}$ 3,并且全序集(S_2 , <) 中第一个长为 c_2 的等差数列 是 1 < 2 < 3,据定理 $2 \in W(3,4) \ge 18$.

顺便指出,这里的 S_1 就是在算法3中,给定整 数 $k_1 = 3, k_2 = 4, p = 17$ 时的 H 的第 122 个元(其

中 $a_1 = 1$ 的有 47 个元, $a_1 = 2$ 的有 41 个元, $a_1 = 3$ 的有 33 个元,这 S_1 是 $a_1 = 4$ 的第 1 个元).

(2) $\Leftrightarrow p = 21, S_1 = \{1, 2, 6, 7, 9, 14, 15, 18, \dots \}$ 20}, \mathbb{N} $S_2 = [21] - S_1 = \{3,4,5,8,10,11,12,13,$

 $\{16,17,19,21\}$,由算法 1 得到 $c_1=l(S_1)=2$, $c_2=1$

 $l(S_2) = 4$,并且全序集(S_2 , \prec) 中第一个长为 c_2 的

等差数列是4 < 8 < 12 < 16,据定理 $2 \in W(3,5) \geqslant$

顺便指出,这里的 S_1 就是在算法3中,给定整 数 $k_1 = 3, k_2 = 5, p = 21$ 时的 H 的第 31 个元.

为了简便,以下不再写出 S_2 的各项元素.

 $\{25,31\}$,则 $S_2 = [31] - S_1$,由算法 1 得到 $c_1 =$ $l(S_1) = 2, c_2 = l(S_2) = 5,$ 并且全序集 $(S_2, <)$ 中第 一个长为 c_2 的等差数列是 4 < 6 < 8 < 10 < 12,据

定理 2 有 $W(3,6) \ge 32$. 顺便指出,这里的 S_1 就是在算法3中,给定整

数 $k_1 = 3$, $k_2 = 6$, p = 31 时的 H 的第 507 个元.

(4) $\Leftrightarrow p = 45, S_1 = \{1, 3, 8, 11, 17, 18, 22, 29, \dots \}$ $\{30,32,37,39\}$,则 $S_2 = [45] - S_1$,由算法 1 得到 $c_1 = l(S_1) = 2, c_2 = l(S_2) = 6$,并且全序集 $(S_2, <)$

中第一个长为 c_2 的等差数列是 4 < 7 < 10 < 13 <

16 < 19,据定理 2 有 $W(3,7) \ge 46$. 顺便指出,这里的 S_1 就是在算法3中,给定整

数 $k_1 = 3, k_2 = 7, p = 45$ 时的 H 的第 32066 个元. (5) $\Leftrightarrow p = 57, S_1 = \{2, 5, 10, 12, 17, 21, 27, 28, \dots \}$

34,38,43,45,50,53},则 $S_2 = [57] - S_1$,由算法 1 得到 $c_1 = l(S_1) = 2$, $c_2 = l(S_2) = 7$,并且全序集 (S_2) <) 中第一个长为 c_2 的等差数列是 1 < 7 < 13 <

19 < 25 < 31 < 37,据定理 2 有 $W(3,8) \ge 58$. 顺便指出,这里的 S_1 就是在算法 3 中,给定整

数 $k_1 = 3, k_2 = 8, p = 57$ 时 H 的第 3987524 个元 (其中 $a_1 = 1$ 的有 2976707个元,这 S_1 是 $a_1 = 2$ 的第

1010817 个元). //

据算法 3,我们有 引理 7 $W(3,4) \leqslant 18, W(3,5) \leqslant 22,$

在最前的与最后的 3 个元.

 $W(3,6) \leq 32, W(3,7) \leq 46, W(3,8) \leq 58.$ 证明 为了简便,以下仅分别写出H的排序

义 8 由 P 构造 $A \setminus B \setminus H$,有 r = |H| = 173(52,47,

41,33),其中 $H_1 = \{1,2,4,8,10,11,13,17\},$

 $H_2 = \{1, 2, 4, 8, 11, 13, 16, 17\},\$ $H_3 = \{1,2,5,7,10,11,14,16\},\$

 $H_{r-2} = \{4,8,10,14,15,17\},$

 $H_{r-1} = \{4,8,11,13,15,17\},$ $H_r = \{4,8,11,15,16\}.$

由算法 3 得到:对于任一 $h \in [1,173]$,令

 $S_1 = H_h, S_2 = [18] - S_1$,都有 $l(S_2) \geqslant k_2 = 4$,据定

理 3 有 $W(3,4) \leq 18$. (2) 令 $k_1 = 3, k_2 = 5, p = 22$. 则从定义 6 到定 义 8 由 P 构造 A、B、H,有 r = |H| = 1143(288)

262,234,201,158),其中 $H_1 = \{1,2,4,5,10,12,17,21\},\$

 $H_2 = \{1,2,4,5,10,13,17,20\},\$

 $H_3 = \{1, 2, 4, 5, 10, 14, 17, 21, 22\},\$

 $H_{r-2} = \{5,10,14,17,21,22\},$

 $H_{r-1} = \{5,10,14,19,20,22\},$ $H_r = \{5, 10, 14, 19, 21, 22\}.$

由算法 3 得到:对于任一 $h \in [1,1143]$,令

理 3 有 $W(3,5) \leq 22$. (3) 令 $k_1 = 3, k_2 = 6, p = 32$. 则从定义 6 到定

 $S_1 = H_h, S_2 = [22] - S_1,$ 都有 $l(S_2) \geqslant k_2 = 5,$ 据定

义 8 由 P 构造 A、B、H,有 r = |H| = 19756(4472)3912,3581,3076,2596,2119),其中

 $H_1 = \{1, 2, 4, 5, 10, 12, 17, 21, 26, 27\},\$ $H_2 = \{1, 2, 4, 5, 10, 12, 17, 21, 27, 28, 31\},\$

 $H_3 = \{1,2,4,5,10,13,17,20,26,28,31\},$

 $H_{r-2} = \{6,12,17,23,26,30,31\},$ $H_{r-1} = \{6,12,17,23,26,31,32\},\$

 $H_r = \{6,12,17,23,27,30,32\}.$ 由算法 3 得到:对于任一 $h \in [1,19756]$,令

 $S_1 = H_h, S_2 = [32] - S_1$,都有 $l(S_2) \geqslant k_2 = 6$,据定 理 3 有 $W(3,6) \leq 32$.

(4) 令 $k_1 = 3, k_2 = 7, p = 46$. 则从定义 6 到定 义 8 由 P 构 造 $A \setminus B \setminus H$,有 r = |H| =

659324(135768,117772,104143,90228,81463,

70277,59673),其中

 $H_1 = \{1,2,4,5,10,12,17,21,26,27,34,36,39,43\},$ $H_1 = \{1,2,4,5,10,12,17,21,26,27,34,36,43\},$

 $H_2 = \{1,2,4,5,10,12,17,21,26,27,34,39,43,45,46\},$

 $H_3 = \{1,2,4,5,10,12,17,21,26,28,34,36,43,45\},$

...,

 $H_{r-2} = \{7,14,20,27,32,39,41,42\},$

 $H_{r-1} = \{7, 14, 20, 27, 32, 39, 42, 43\},$

 $H_r = \{7,14,20,27,32,39,43,45\}.$

由算法 3 得到:对于任一 $h \in [1,659324]$,令 $S_1 = H_h$, $S_2 = [46] - S_1$,都有 $l(S_2) \geqslant k_2 = 7$,据定

理 3 有 $W(3,7) \leqslant 46$.

(5) 令 $k_1 = 3$, $k_2 = 8$, p = 58. 则从定义 6 到定义 8 由 P 构造 A, B, H, 有 r = |H| = 17839288(3439416,2976707,2623941,2281773,

2009964,1733296,1500412,1273779),其中

 $H_1 = \{1,2,4,5,10,11,14,22,25,31,32,38,41,47,55\},$

 $H_2 = \{1,2,4,5,10,11,14,22,25,31,35,38,44,47,55\},$

 $H_3 = \{1,2,4,5,10,11,14,22,25,31,35,41,44,50,54,55\},$

•••

reverence concrete

 $H_{r-2} = \{8, 16, 23, 31, 37, 45, 50, 52, 56, 57\},$

 $H_{r-1} = \{8,16,23,31,37,45,52,55,56\},$

 $H_r = \{8,16,23,31,37,45,52,56,57\}.$

由算法 3 得到:对于任一 $h \in [1,17839288]$,令 $S_1 = H_h$, $S_2 = [58] - S_1$,都有 $l(S_2) \geqslant k_2 = 8$,据定理 3 有 $W(3,8) \leqslant 58$.

综合引理 6 与引理 7, 就证明了定理 1 的结论.

我们在 AMD2400 的计算机上完成上述运算所用的时间是 $5\ h$.

参考文献:

- [1] VAN DER WAERDEN B L. Beweis einer banudetschen Vermutung[J]. Nieuw Archief Voor Wiskunde, 1927(15):212-216.
- [2] GRAHAM R L, ROTHSCHILD B L, SPENCER J H. Ramsey theory [M]. New York: John Wiley & Sone, 1990.
- [3] 李乔. 组合数学基础[M]. 北京:高等教育出版社, 1993.
- [4] RADZISZOWSKI S P. Small Ramsey numbers[J]. The Electronic Journal of Comb Inatorics, 2004, DS1, #10: 1-48.

(责任编辑:韦廷宗)

欢迎在《广西科学院学报》上刊登广告宣传

recenterentes

recenterentes

《广西科学院学报》是广西自然科学综合性学术期刊,大16开本,每季度出版1期。《广西科学院学报》于1982年创刊以来,为活跃自然科学的理论研究,促进科技成果向生产力转化,繁荣科学技术事业,推动科技成果在国内外的交流作出了积极的贡献。《广西科学院学报》曾分别获广西优秀期刊一等奖、二等奖和三等奖。2005年《广西科学院学报》的总被引频次和影响因子排在全国地区科技综合类的前十名,出版质量名列广西科技期刊的第五名。《广西科学院学报》在广西科技界已经具有相当高的知名度和社会影响力。

《广西科学院学报》读者群的文化水平和专业素质都很高,通过《广西科学院学报》,厂商能够将产品信息直接而准确地发送给其最终用户,成本低、效率高。《广西科学院学报》的内容严谨、信息权威,其刊登的广告在受众心目中的可信度高。《广西科学院学报》具有重要的学术价值,在出版后相当长一段时期内,对读者仍具有利用和参考价值,大多数读者都连续收藏,大大延长了广告的生命周期,因而凡是致力于在业内长期发展的大型专业厂商,都可以选择本刊作为广告发布媒体。

另外,《广西科学院学报》的主办单位广西科学院,是自治区党委、人民政府直接领导的综合性自然科学研究机构,在老百姓心目中,牌子大,地位高,在《广西科学院学报》上做形象广告,可以出名快,影响范围广大。

本刊编辑部地址:南宁市大岭路 98 号,邮编:530003;联系人:韦廷宗,邓大玉;联系电话:0771-2503922; 0771-2503923;Email:gxkxyxb@gx163.net;ddy1027@126.com