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Abstract : Computational mutation is a discipline developed according to the random principle that
lies in the very heart of the nature. It overcomes the limitation of bioinformatics and
computational biology, where the letters and measures are not subject to the sequence length,
amino-acid composition and position, neighboring amino acids, etc. Three methods are
developed, amino-acid pair predictability, amino-acid distribution probability and mutating
probability, to quantify a whole protein or each amino acid in proteins, which provides living,
dynamic measures to quantitatively analyze protein. Currently the computational mutation is
applied to studying the protein evolution, diagnosing genetic disorder, estimating protein
structure and function, designing drug target, predicting mutation and so on.

Key words: amino-acid pair predictability, amino-acid distribution probability, amino-acid
mutating probability, protein, computational mutation

FE N T SERA W5 B2 A3 AE 4 2 b 2 B BB R 32 e 5 A BE | 0 TR A Rl o B 4 4 B R B ) 1
B AR B R R R A A M BE ALY R B, RIS TR AR B AR R A R R R R X T B . R 4 A A
EMEFMRIFH T ERABNIEARKESNEAER, AEN. SIS ERFRESITEAR. HELZR
205 BT AN PR T 4R R . AR e e W, AT ARG S ThRE . 25 Wt A AR S B 4

2010,26(2):130~139
Vol. 26,No. 2 May 2010

FU .

XEW AR AT B FERSAHME FAEREFME EAR HEERE

FEESHES:.Q-03 XEKFRINEG A

Since 1999, we have been developing a research
approach that is now called the computational
mutation. The computational mutation not only

produces more than 70 research articles in
international peer-reviewed journals including 50
articles indexed in SCI journals over last ten
years''~71, a chapter in a book™® and a book!’, but

also opens a new research front. Therefore, it is our
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duty to introduce the computational mutation to the
scientific community inside China because all of our
publications are in English without Chinese abstract.

In this mini-review, we would like to use the
plain words to explain what the computational
mutation is, where it comes from, what its
advantage is over the current computational methods
in biological sciences. Here, we use proteins to
illustrate the computational mutation because our
work éxclusively concentrates on protein study
although the computational mutation can be used for
DNA and RNA studies.

1 Creation of computational mutation

1.1 Bioinformatics and computational biology

The challenge faced in post-human genome
project is that humans have too much DNA/RNA/
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protein data to deal with, because the international
open-access databanks are very rich resources, from
which we can find far much more information.

In order to analyze these vast amounts of the
data, not only computers are employed, but also
more importantly several computational methods have
these  methods,
bioinformatics and computational biology nlay the

been  developed. Among
leading roles. Although there are many definitions on
what bioinformatics and computational biology are,
we would like to look at them from computational
viewpoint.

As we know that DNA/RNA /protein sequences
are represented using letters. For example, we
generally use 20 letters to represent 20 amino acids,
thus in fact a protein sequence is a sequence of
different letters. Actually, we use a computer to deal
with a sequence of letters when we would like to find
any information from a DNA /RNA /protein.

In this context, the bioinformatics is somewhat
similar to what we are doing when reading a book:
we could meet unknown words or we could have
interests on where a particular sentence comes from.
In our reading, we can use a dictionary to find the
meaning of unknown words and search various
literatures to find where a particular sentence comes
from. In biological fields, when we find a new
protein, for instance, we can check it against protein
databanks to see if there is any similarity between
this new protein and proteins in databanks. Then we
can define the possibly functional units by comparing
each part of this new protein with known functional
units of various proteins in databanks.

In this view, the bioinformatics mainly operates
on the letters represented nucleotides or amino acids.
Technically, the most programs in bioinformatics
deal with comparing letters by commands of yes and
no as well as how to align DNA/RNA /protein
sequence in order to make it comparable with
historical ones. There are two development stages in
bioinformatics, the one was mainly involved with
researchers specialized in progr;m writing while the
other is now mainly involved with researchers using
these programs for biological studies.

But human efforts were not stopped at the stage
of using computer to operate letters, because
researchers also hope to bring more meaningful
information rather than the letters into analysis on
DNA/RNA /protein. This led to the computational

biology, by which the physicochemical property of
nucleotide/amino acid are used to replace the letters
in DNA/RNA /protein sequence. For example, we
can use the molecular weight of an amino acid to
replace the letter of this type of amino acids in a
protein, thus we get a molecular-weight sequence of

about 500
[80].

a protein. Currently there are
physicochemical properties used for this propose

However, there is a limitation when using the
physicochemical property to replace the letters in
DNA /RNA /protein

physicochemical property was created by physicists or

sequence , because the
chemists for their own proposes, which could be
different from our proposes in biological fields. For
example, the same type of amino acids may play
different roles at different positions in a protein.
However, there is no difference between any two
amino acids of the same type if we use any
physicochemical property to replace them because the
physicochemical property is a constant value for a
certain type of amino acids.

1.2 Development of new measures

A protein is alive and evolves through
mutations. Therefore we aimed to find the measures
that would be sensitive to mutation. This goal led to
the creation and development of computational
mutation.

On the other hand, we can find that the
methods to
phenomena appears in the earlier stages of most

development of measure natural
scientific fields if we look back the scientific history.
For example, the geometry began from measuring
land, and the relativity began from measuring speed
of light. Thus, the famous French scientist, Henri
Poincaré said that the important thing is not to know
what it is, but how to measure it"*'/.,

However, it is not difficult to note that there is
no similar development of how to measure the living
sign of DNA/RNA /protein in biological sciences.
This fact again encourages us to search such
measures.

1.2.1 Why we need measurements

Here, one may easily ask a question why we
need to develop measures that convert letters into
numbers. A simple answer to this question is that the
replaced numbers can represent some particular
property of DNA/RNA /protein.
would like tG answer this question in such a way that

However, we

the conversion of letters to numbers allows us to
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observe DNA/RNA /protein in a domain different
from the domain represented by the letters.

In fact, we frequently convert an issue of
interest into another domain in order to find
something that does not appear in the original
domain. For example, when we use the molecular
weight of amino acids to replace amino acids in a
protein, we look at this protein from the domain of
molecular weight.

Moreover, the conversion of DNA/RNA/
protein into numerical domain from letter one not
only helps us observe their patterns in numerical
domain but also more importantly provides us with
the opportunity of applying mathematical models to
analyze the DNA/RNA/protein in numerical
domain. '
Le2s2
numbers

Difficulty in conversion from letters to

Although a protein is generally composed of 20
types of amino acids, we cannot simply use numbers
to replace these letters, say, to use 1 to 20 to replace
20 types of amino acids, not only there is no meaning
in this conversion, but also we cannot deal with this
type of data efficiently as our mathematical system is
dealing with decimal, binary, octal and so on. This
is the same for DNA and RNA.

Thus, we face two difficulties, (i) we need the
converted numbers falling into our mathematical
system with meanings, and (ii) we need the
converted numbers to have a living sign of DNA/
RNA /protein.

2 Methods of computational mutation

At first our attention paid to probability,
because the probability would simply suggest the
chance that a mutation is likely to occur if we
associate this probability with a mutation. Besides,
pure chance is now considered to lie at the very heart

521, Along this line of thought, we have

of nature
developed three methods to measure the amino-acid
difference in different compositions, in different
lengths, at different positions and with different
neighboring amino acids.

2.1 Method I :amino-acid pair predictability as a
measure to analyze the composition of adjacent
amino-acid pairs in a protein

25
amino-acid pair

Actual frequency and predicted frequency of

As we compared the bioinformatics with our
reading, we also initially considered a protein as an

unknown text. For an unknown text, we can use the
cryptology as a tool to analyze its meaning by
counting the frequencies of a single letter, paired
letters, and so on. Along this line of thought, we
had counted the frequencies of amino-acid pairs,
three-amino-acid sequences , four-amino-acid
sequences, five-amino-acid sequences, and so on.
These counted frequencies are their actual frequencies
and finally we found that the amino-acid pairs are
most suitable to be analyzed.

For analyzing an unknown text, we can use
counted frequencies to compare with the natural
frequencies of elements in a known human language.
However, we have no protein language as a reference
to compare the actual frequencies of amino-acid pairs
in a protein. We therefore considered the frequency
obtained by permutation as the predicted frequency,
because there are 20 types of amino acids so
theoretically there would be 400 (20 X 20) types of
amino-acid pairs, which can serve as a reference for
our comparison.

2.1.2 Amino-acid pair predictability

For each type of amino-acid pair, we can
determine it belonging to predictable or unpredictable
by comparing its actual frequency with the predicted
one. For example, the human factor IX protein
(accession number P00740) consists of 461 amino
acids, which can be counted as 460 adjacent amino-
acid pairs. The factor IX protein has 43 glutamic
if the
permutation can predict the appearance of amino-acid
pair EN, which must appear three times (43/461 X
32/460 X 460 = 2. 98), and it indeed appears 3
times ,

acids “E” and 32 asparagines “N”.

thus its appearance is predictable using
permutation. By contrast, this factor IX protein has
16 tyrosines “Y” and 37 valines “V7”. if the
permutation can predict the appearance of YV,
which must appear once (16/461 X 37/460 X 460 =
1. 28), however, it appears five times in realty, thus
its appearance is unpredictable.

.
protein

Predictable and unpredictable portions of

In this way, we can classify all amino-acid pairs
in a protein as predictable and unpredictable, and
calculate the predictable and unpredictable portions.
For human factor IX protein, its predictable and
unpredictable portions are 26. 09% and 73. 91% as
the total is 100%. Both the predictable portion and
the unpredictable can serve as a measure to represent
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a protein.

There is a mutation of human factor IX
substituting cysteine for arginine at position 407.
Although this mutation is related to a single amino
acid, its predictable and unpredictable portions
become 25. 65% and 74. 35%. In this manner, each
protein has a unique number, either predictable or
unpredictable portion, to distinguish itself from
others.

From the application viewpoint, we can use this
approach to compare proteins from different families,

[30, 33, 38, 42, 47, 48, 74] ¢ and we can

subtypes, and species
also use this approach to study the evolution of a

protein family along the time

[41, 44, 48, 67, 71, 76, 77] When we Consider each

course
protein as a basic element for comparison.
2.1.4 Five attributes of amino-acid pair
predictability

On the other hand, if our research interests
concentrate on individual amino-acid pair rather than
a whole protein, we can assign the predicted and
actual frequency to each individual amino-acid pair,
difference between

then we would have the

predictable and actual frequency. By comparing
predicted frequency with actual one, we furthermore
classify each individual amino-acid pair as (i) the
randomly predictable present type of amino-acid pair
with predictable frequency, (ii) the randomly
predictable absent type of amino-acid pair, (iii) the
randomly predictable present type of amino-acid pair
with unpredictable frequency, (iv) the randomly
unpredictable present type of amino-acid pair, and
(v) the randomly unpredictable present type of
amino-acid pair.

From the application viewpoint, we can use this
approach to compare the difference in a particular
amino-acid pair before and after mutation in order to
determine the mutation patterns related to each
individual aminO‘aCid pair[zl- 23~31, 34~36, 40, 65, 66, 70.75]‘
2.1.5 Meanings of amino-acid pair predictability

After developed this method conceptually, we
have computed tens of thousands of proteins to
determine if the amino-acid pair predictability is valid
for different proteins. The results confirm that each
protein has its unique predictable and unpredictable
portions, and that the difference between predicted
and actual frequency is very sensitive to mutation.

Meanwhile, the amino-acid pair predictability

can have the following meanings: (i) the predictable

amino-acid pairs suggest their construction with the
maximal probability of occurrence, which needs the
least time and energy; (ii) the unpredictable amino-
acid pairs suggest that nature deliberately spend more
time and energy for its construction no matter of
what purpose is.

Still, the amino-acid pair predictability can
reliably record the changes in proteins induced by
gene mutation so it can measure the living proteins.
The most important implication drawn from our
studies is that protein evolution can be regarded as
that Nature would like to minimize the difference
between predicted and actual frequency of amino-acid
pairs in a protein, which leads to mutations.
However, any new mutation may create new
difference between predicted and actual frequency of
amino-acid pairs, which may lead Nature to minimize
the new difference again through mutation. Such a
process may continue without ending, which is one of
reasons driving the evolution.

252 Method T .
probability as a measure to analyze the complexity
of amino-acid distribution

2521

Amino-acid distribution

Amino-acid distribution probability
After

predictability, we considered that we needed to

developed the amino-acid pair
develop a measure that could be sensitive to the
positions of amino-acids in a protein because the
amino-acid pair predictability is more relevant to
protein length, composition and neighboring amino
acids.

Initially, we assumed how we could guess an
approximate position of an amino acid in a protein,
whose answer is that an amino acid can be at any
position of a protein. Then, we guess two
approximate positions for two amino acids in a
protein, naturally we could imagine dividing this
protein into two partitions, then each part could have
an amino acid, or a part could have two amino acids.
Afterwards, we guess three approximate positions
for three amino acids in a protein, and similarly we
could imagine dividing this protein into three
partitions, and so forth for more amino acids.

This led us to consider a similar situation in

statistical physics, where there are Maxwell
Boltzmann, Fermi Dirac, and Bose Einstein
assumptions™®), If we do not distinguish each

partition, our situation is similar to the Maxwell-

Boltzmann assumption. So we can view the
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distribution pattern of a type of amino acids along

protein sequence is analogous to the occupancy of

subpopulations and partitions, thus we can calculate

the amino-acid distribution probability using
rl 7

Tt sl ok e X go! X g1} X ++ X g,

184 where 7 is the number of amino acids, 7 is the

X

n
number of partitions, 7, is the number of amino acids
in the n -th partition, ¢, is the number of partitions
with the same number of amino acids, and ! is the
factorial function.

For example, two amino acids have two possible
distributions along a protein, that is, two amino

acids distribute in each partition or in any one

partition if we imagine dividing this protein into two
partitions, for which we would have the distribution
21 21 £ e
Tix1 N orxzixor X2 T ix1 X
! !
2 21 21 X 92

I B0 B T X b < 1)
2 2

zm rx—lx—lxo. 25=0.5.

2252 Characteristics of amino-acid distribution
probability

probabilities,

In this way, we can computer the amino-acid
distribution probability for each type of amino acids in
a protein using the above equation. Here, we can
notice  several characteristics of amino-acid
distribution probability.

First, there are two theoretical distributions for
two amino acids in a protein as mentioned in the
above section, and then there are three theoretical
distributions for three amino acids in a protein.
Hereafter, the thing is different, because there are
five theoretical distributions for four amino acids,
seven theoretical distributions for five amino acids,
11 theoretical distributions for six amino acids, 15
theoretical distributions for seven amino acids, and so
on. Thus, the general rule is that the increase in the
number of distributions is not proportional to the
increase in the number of amino acids.

Second, the largest distribution probability
decreases as the increase in the number of amino
acids, which are more than two. For instance, the
largest distribution probability is 0. 67 for 3 amino
acids, 0. 56 for 4 amino acids, 0. 38 for 5 amino
acids, 0. 35 for 6 amino acids, and so on.

Third, the probability of uniform distribution is
very small, that is, the chance is very small for each

partition to have an amino acid.

Finally, sometimes different distributions can
have the same distribution probability so we arrange
all the distribution probabilities in descending order,
which we call as the distribution rank for distinction.
The bigger the distribution probability is, the smaller
the distribution rank is. The distribution rank is the
same for different distributions with the same
distribution probability.

2.2.3 Actual and predicted amino-acid distribution
probability

Theoretically there are many distributions for
each type of amino acids in a protein, but a certain
type of amino acids in a protein can adopt only one
distribution in  real-life, whose distribution
probability is the actual amino-acid distribution
probability.

According to the random principle, any event
with the greatest probability will occur most likely.
Therefore, the

probability can be considered as the predicted

biggest amino-acid distribution
probability to serve as a reference, and we can
compare the actual amino-acid distribution probability
with the predicted one to analyze the complexity of
amino-acid distribution in proteins.

Pehgad Predictable/Unpredictable
difference between predicted and actual probability

portion and

As we do in Method 1, we can also classify a
protein as predictable and unpredictable portions in
terms of amino-acid distribution probability. Still,
we can assign the predicted and actual amino-acid
distribution probabilities to each amino acid in a
protein, which is somewhat different from what we
do using the amino-acid pair predictability where we
assign the predicted and actually frequencies to
amino-acid pair. We can estimate the complexity of
amino-acid distribution by the ratio of predicted
versus actual probability[10: 15 16+ 19, 22, 37, 39, 45, 46]_
201D
probability

Meanings of amino-acid distribution

The amino-acid distribution probability is a
measure to estimate the spatial randomness in the
protein primary structure. It can answer why a
certain type of amino acids do not evenly distribute
along a protein sequence but rather concentrate on
different regions. From the random viewpoint, the
probability is quite small for the uniform distribution,
indicating that Nature requires the non-uniform
distribution of amino acids along a protein sequence
during the process of protein synthesis to form the
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active site, which is the base for high-level structure
and protein function.

The small distribution probability or the big
distribution rank suggests that a protein composition
is less random and more complicated. Such a protein
is less stable and easy to mutate.

2.3 Method II . amino-acid mutating probability
as a measure to analyze the future amino-acid
composition and would-be mutated amino acid
2.3.1 Translation probability between RNA
Codons and Amino Acids

After developed the above two methods, which
are not related to the time direction, we hope to
develop a method, which is related to the time
direction. Our attention at first paid to the
relationship between RNA codons and translated
amino acids.

There are unambiguous relationships between
RNA codons and translated amino acids, and the
same amino acid can be translated by different RNA
codons because there are 64 RNA codons but 20
amino acids plus STOP signal, say, RNA codons are
more than amino acids. For example, methionine is
related with a single RNA codon (AUG),
phenylalanine with two codons (UUU and UUC),
isoleucine with three codons (AUU, AUC and
AUA), proline with four codons (CCU, CCC, CCA
and CCG), and leucine with six codons (UUA,
UuG, CUU, CUC, CUA and CUG).

As a RNA codon is composed of any three out of
four nucleotides (A, C, G and U), how does a point
mutation at RNA codon affect the five amino acids
mentioned above? We can infer that the order is
methionine, phenylalanine, isoleucine, proline and
leucine according to their affected extent. As
methionine is only related with a single RNA codon,
it will certainly be mutated into other amino acids;
however, leucine is related with six codons so a point
mutation at RNA codon will have a smaller impact on
it. From the difference between the number of RNA
codons and the number of amino acids, we can
deduce the translation probability between RNA
codons and translated amino acids, which is a time-
orientated measure because the mutation is directed
to the future, that is, this probability indicates which
amino  acid point

appears easily after a

mutationt® 4% 78],
2.3.2 Amino-acid mutating probability

The translation probability between RNA

codons and translated amino acids are related to two
levels;: RNA and protein. If we focus on studying
variations in the protein level, we are more interested
in the probability that an amino acid changes to other
ones. Therefore, we sum up the mutating
probabilities, by which we know the chance for an
amino acid to mutate to another amino acid.

2.3.3 Amino-acid future composition

The amino-acid mutating probability reflects the
time-orientated randomness, so we can calculate the
future composition of amino acids in a mutant protein
from the current wild protein. The difference
between future and current composition of amino
acids not only drives protein mutations, but also
implies which type of amino acid has a greater chance
appearing after mutation and which type of amino
acid has a smaller chance.

More importantly, we know when a mutation
can form the STOP signal so we can explain why
some mutations will induce the truncated protein and
its proportion. This is a remarkable feature that our
approach is different from other methods.

2.3.4 Meanings of amino-acid mutating probability

The future amino-acid composition is based on
large-scale and long-term statistics, which is
governed by the translation probability between RNA
codons and translated amino acids. To predict the
would-be mutated amino acids, we cannot accurately
predict what type of amino acids would form in the
mutant, but we can know the probability of its
formation.

In fact, the ratio of future versus current amino-
acid composition indicates the mutation trend, that
is, the bigger the ratio is, the larger the mutation
trend is for given type of amino acids. From this
ratio, we can know which type of amino acids is
more likely to mutate, which is very important for
knowing the mutation trend in each type of amino
acids and predicting mutations, thus we can use this
ratio as an indicator engineering mutation.

2.4 Comparison of three methods

All our three methods can quantify each amino
acid in a protein sequence and the whole protein with
a numerical datum. During 10 years, we have used
them to study tens of thousands of various proteins,
to observe their behaviors from the angle of time,
space, and time and space. The results reveal that
dynamic is the common feature for all of these

measures. They are sensitive to the changes in
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protein length, in amino-acid composition and
position, and in neighboring amino acids. Thus,
these methods are suitable for analyzing mutation.

Method 1 deals with the various subsets of
amino-acid pairs so it is sensitive to the changes in
adjacent amino acids. Method 1 deals with the
linear space structure of amino acids so it is sensitive
to the changes in position. Method II deals with the
time point of amino acids so it is sensitive to the
would-be mutated amino acids.

Thus, these three methods reflect the protein
randomness from different viewpoints, and provide
new ways for further understanding of the biological
evolution through mutations. The detail comparisons
of the methods have been published in our previous

WOI’kSEZO' 48, 79] #

3 Applications of computational mutation

After developing the methods of computational
mutation, we have been focusing on exploring their
applications, in order to use them to explain various
phenomena in biology and medicine, and to solve
practical problems.

3.1 Analyzing mutation patterns in proteins

We have used the approaches of computational
mutation to analyze tens of thousands of proteins, in
order to reveal their mutation patterns. The results
show that the mutation is highly likely to occur at the
unpredictable amino-acid pairs. The majority of
mutation-targeted pairs are characterized by one or
both pairs whose actual frequency is larger than
predicted one, meanwhile many mutations lead to
one or both mutation-formed amino-acid pairs with
their actual frequency smaller than predicted one.
Thus,

difference between predicted and actual frequency of
[41, 44, 48, 67, 71, 76, 77]

the mutation trend is to diminish the

amino-acid pairs
3.2 Diagnosing genetic disorders quantitatively

We have analyzed various genetic diseases,
firstly we use the amino-acid distribution probability
to quantify the normal protein and its mutants, then
we use the cross-impact analysis to determine the
relationship between mutant proteins and their
clinical outcome, and finally we use the Bayesian
equation to calculate the probability that a certain
disease occurs under a mutation.

In this way, we build a descriptively
probabilistic method to determine the probability of
occurrence of a single gene disorder when a new
mutation is present. Our approach paves the way for

analyzing quantitatively the relationship between
genotype and phenotype, which will help the early
diagnosis[6]~64. 69, 72, 73]' v
3.3 Estimating protein structure and function

We have used the amino-acid distribution rank
as a measure to quantify the normal and mutant
hemoglobin chains to analyze their stability and
oxygen affinity. The results show that if a mutation
increases the amino-acid distribution rank, the
mutant has a larger probability of increasing oxygen
affinity, but also has a larger probability of
instability.

These studies support our viewpoint: the larger
the amino-acid distribution rank is, the more
complex the protein structure is, the more powerful
the protein function is, but the less stable the protein
is. Our approach has benefit to quantitatively study
the relationship between protein structure and its
function®® 7,

3.4 Designing potential targets for antiviral drug

From the probability viewpoint, we can choose
some amino-acid pairs as potential targets of antiviral
drug. These pairs will have a large chance of colliding
with drug, and of linking closely to protein function,
but will be less sensitive to mutations. This

framework provides new ideas for
[32, 79]

theoretical
designing antiviral drugs
3.5 Predicting mutations in influenza A viruses

In recent years, we have focused on the
mutations of influenza A viruses because of the threat
of flu pandemic. We have been explored how to
systematically predict the mutations and developed
the prediction strategies, for example, using the
cross-impact analysis and Bayesian equation to
calculate the probability of spontaneous mutations,
using the logistic regression and neural network to
predict the mutation positions, using the amino-acid
mutating probability to predict the would-be mutated
amino acids, using the Fast Fourier Transform to
determine the periodicity, searching for natural
factors that affect the virus mutations to time the
outbreak of influenza, and so

On[33‘ 39, 41, 42, 44, 46~48, 50~57, 59, 60, 67, 68, 71, 74, 76, 77]

4 Conclusions

Over the last 10 years, we have been fortunate
which is called the
mutation. This

to develop a discipline,

computational computational
mutation has two important advantages over the

other approaches: (i) the computational mutation
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can measure the living sign of DNA/RNA /protein,

which overcomes the limitation of bioinformatics and

computational biology, and (ii) the computational
mutation suggests that the evolution of DNA/RNA/
protein is partially attributed to the fact that Nature

has the intention to minimize the difference between

predicted and actual values, which leads to mutations

that create new difference between predicted and

actual values, thus the evolution is a non-stop and

continuous process.
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