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Abstract : Computational mutation is a discipline developed according to the random principle that 
lies in the very heart of the nature. It overcomes the limitation of bioinformatics and 
computational biology, where the letters and measures are not subject to the sequence length, 
amino-acid composition and position, neighboring amino acids, etc. Three methods are 
develop时， amino-acid pa让 predictability, amino-acid distribution probability and mutating 
probability, to quantify a whole protein or each amino acid in proteins, which provides living, 
dynamic measures to quantitatively analyze protein. Currently the computational mutation is 
applied to studying the protein evolution, diagnosing genetic disorder, estimating protein 
structure and function, designing drug target, predicting mutation and so on. 
Key words: amino-acid pair predictability, amino-acid distribution probability, amino-acid 
mutating probability, protein, computational mutation 
摘要：为了克服生物信息、学和计算生物学中字母或数字不受序列长度、氨基酸组成和位置、相邻氨基酸影响的

缺陷，根据自然界普遍存在的随机性原理，创立计算变异学。计算变异学用氨基酸对可预测性、氨基酸分布概

率和变异概率3种方法量化整个蛋白质及每个氨基酸，用活的、动态的测量指标量化分析蛋白质。 计算变异

学方法可以应用于研究蛋白质进化、遗传病定盘诊断，分析蛋白质结构与功能、药物设计和病毒变异预测等

领域。
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Since 1999, we have been developing a research 

approach that is now called the computational 

mutation. The computational mutation not only 

produces more than 70 research articles in 

international peer-reviewed journals including 50 

articles indexed in SCI journals over last ten 

years[ 1～町 ， a chapter in a book [ 7sJ and a book[79J , but 

also opens a new research front . Therefore, it is our 
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duty to introduce the computational mutation to the 

scientific community inside China because all of our 

publications are in English without Chinese abstract. 

In this mini-review, we would like to use the 

plain words to explain what the computational 

mutation 邸， where it comes from, what its 

advantage is over t he current computational methods 

in biological sciences. Here, we use proteins to 

illustrate the computational mutation because our 

work exclusively concentrates on protein study 

although the computational mutation can be used for 

DNA and RNA studies. 

1 Crea tion of computational mutation 

1. 1 Bioinformatics and computational biology 

The challenge faced in post- human genome 

project is that humans have too much DNA/ RNA/ 
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protein data to deal with, because the international 

open-access databanks are very rich resources, from 

which we can find far much more information. 

In order to analyze these vast amounts of the 

data, not only computers are employed, but also 

more importantly several computational methods have 

been developed. Among these methods, 

bioinformatics and computational biology !)lay the 

leading roles. Although there are many definitions on 

what bioinformatics and computational biology are, 

we would like to look at them from computational 

v1ewpomt. 

As we know that DNA/ RNA/ protein sequences 

are represented using letters. For example, we 

generally use 20 letters to represent 20 amino ac1缸，

thus in fact a protein sequence is a sequence of 

different letters. Actually, we use a computer to deal 

with a sequence of letters when we would like to find 

any information from a DNA/ RNA/ protein. 

In this context, the bioinformatics is somewhat 

similar to what we are doing when reading a book: 

we could meet unknown words or we could have 

interests on where a particular sentence comes from. 

In our reading, we can use a dictionary to find the 

meanir 

literatures to find where a particul缸 sentence come s 

from. In biological fields, when we find a new 

protein, for instance, we can check it against protein 

databanks to see if there is any similarity between 

this new protein and proteins in databanks. Then we 

can define the possibly functional units by comparing 

each part of this new protein with known functional 

units of various proteins in databanks. 

In this view, the bioinformatics mainly operates 

on the letters represented nucleotides or amino acids. 

Technically, the most programs in bioinformatics 

deal with comparing letters by commands of yes and 

no as well as how to align DNA/ RNA/ protein 

sequence in order to make it comparable with 

historical ones. There are two development stages in 

bioinformatics, the one was mainly involved with 

researchers specialized in program writing while the 

other is now mainly involved with researchers using 

these programs for biological studies. 

But human efforts were not stopped at the stage 

of . using computer to operate letters, because 

researchers also hope to bring more meaningful 

information rather than the letters into analysis on 

DNA/ RNA/ protein. This led to the computational 
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biology, by which the physicochemical property of 

nucleotide/ amino acid are used to replace the letters 

in DNA/ RNA/ protein sequence. For example, we 

can use the molecular weight of an amino acid to 

replace the letter of this type of amino acids in a 

protein, thus we get a molecular-weight sequence of 

a protein. Currently there are about 500 

physicochemical properties used for this propose[soJ . 

However, there is a limitation when using the 

physicochemical property to replace the letters in 

DNA/ RNA/protein sequence, because the 

physicochemical property was created by physicists or 

_chemists for their own proposes, which could be 

different from our proposes in biological fields. For 

example, the same type of amino acids may play 

different roles at different positions in a protein. 

However, there is no difference between any two 

amino acids of the same type if we use any 

physicochemical property to replace them because the 

physicochemical property is a constant value for a 

certain type of amino acids. 

1. 2 Development of new measures 

A protein is alive and evolves through 

mutations. Therefore we aimed to find the measures 

that would be sensitive to mutation. This goal led to 

the creation and development of computational 

口1utation.

On the other hand, we can find that the 

development of methods to measure natural 

phenomena appears in the earlier stages of most 

scientific fields if we look back the scientific history. 

For example, the geometry began from measuring 

land, and the relativity began from measuring speed 

of light. Thus, the famous French scientist, Henri 

. Poincare said that the important thing is not to know 

what it is, but how to measure, it[siJ. 

However, it is not difficult to note that there is 

no similar development of how to measure the living 

sign of DNA/ RNA/ protein in biological sciences. 

This fact again encourages us to search such 

口1easures.

1. 2. 1 Why we need measurements 

Here, one may easily ask a question why we 

need to develop measures that convert letters into 

numbers. A simple answer to this question is that the 

replaced numbers can represent some particular 

property of DNA/ RNA/ protein. However, we 

would like tci answer this question in such a way that 

the conversion of letters to numbers allows us to 
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observe DNA/ RNA/ protein in a domain different 

from the domain represented by the let'ters. 

In fact, we frequently convert an issue of 

interest into another domain in order to find 

something that does not appear in the original 

domain. For example, when we use the molecular 

weight of amino acids to replace amino acids in a 

protein, we look at this prot巳in from the domain of 

molecular weight. 

Moreover, the conversion of DNA/RNA/ 

protein into numerical domain from letter one not 

only helps us observe their patterns in numerical 

domain but also more importantly provides us with 

the opportunity of applying mathematical models to 

analyze the DNA/RNA/protein in numerical 

domain. 
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unknown text. For an unknown text, we can use the 

cryptology as a tool to analyze its meaning by 

counting the frequencies of a single letter, paired 

letters, and so on. Along this line of thought, we 

had counted the frequencies of amino-acid pairs, 

three-amino-acid sequences, four-amino-acid 

sequences, five-amino-acid sequences, and so on. 

These counted freq4encies are their actual frequencies 

and finally we found that the amino acid pairs are 

most suitable to be analyzed. 

For analyzing an unknown text, we can use 

counted frequencies to compare with the natural 

frequencies of elements in a known human language. 

However, we have no protein language as a reference 

to compare the actual frequencies of amino-acid pairs 

in a protein. We therefore considered the frequency 

1. 2. 2 Difficulty in conversion from letters to obtained by permutation as the predicted frequency, 

numbers 

Although a protein is generally composed of 20 

types of amino act巾， we cannot simply use numbers 

to replace these letters, say, to use 1 to 20 to replace 

20 types of amino acids, not only there is no meaning 

in this conversion, but also we cannot deal with this 

type of data efficiently as our mathematical system is 

dealing with decimal, binary, octal and so on. This 

is t he same for DNA and RNA. 

Thus, we face two difficulties, (i) we need the 

converted numbers falling into our mathematical 

system with meanings, and ( ii ) we need the 

converted numbers to have a living sign of DNA/ 

RN A / protein. 

2 Methods of computational mutation 

At first our attention paid to probability, 

because the probability would simply suggest t he 

chance that a mutation is likely to occur if we 

associate this probability with a mutation. Besides, 

pure chance is now considered to lie at the very heart 

of nature[szJ . Along this line of thought, we have 

developed three methods to measure the amino-acid 

difference in different compositions, in different 

lengths, at differ巳nt positions and with different 

neighboring amino acids. 

2. 1 Method I : amino-acid pair predictability as a 

measure to analyze the composition of adjacent 

amino-acid pairs in a protein 

2. 1. 1 Actual frequency and predicted frequency of 

amino-acid pair 

As we compared the bioinformatics with our 

reading, we also initially considered a protein as an 

because there are 20 types of amino acids so 

theoretically there would be 400 ( 20 × 20) types of 

amino-acid pairs, which can serve as a reference for 

our comparison. 

2. 1. 2 Amino-acid pair predictability 

For each type of amino-acid pair, we can 

determine it belonging to predictable or unpredictable 

by comparing its actual frequency with t he predicted 

one. For example, the human factor IX protein 

(accession number P00740) consists of 461 amino 

acids, which can be counted as 460 adjacent amino­

acid pairs. The factor IX protein has 43 glutamic 

acids “ E ” and 32 asparagines “ N ”: if the 

permutation can predict the appearance of amino-acid 

pair EN, which must appear three times ( 43/ 461 × 
32/ 460 × 460 = 2. 98), and it indeed appears 3 

times, thus its app巳arance is predictable using 

permutation. By contrast, this factor IX protein has 

16 tyrosines “ Y ” and 3 7 valines “ V ”: if the 

permutation can predict the appearance of YV, 

which must appear once (16 / 461 × 37/ 460 × 460 = 

1. 28), however, it appears five times in realty, thus 

its appearance is unpredictable. 

2. 1. 3 Predictable and unpredictable portions of 

protein 

In this way, we can classify all amino-acid pairs 

in a protein as predictable and unpredictable, and 

calculate the predictable and unpredictable portions. 

For human factor IX protein, its predictable and 

unpredictable portions are 26 . 09 % and 73 . 91 % as 

the total is 100 % . Both the predictable portion and 

the unpredictable can serve as a measure to represent 
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a protein. 

There is a mutation of human factor IX 

substituting cysteine for arginine at position 407. 

Although this mutation is relaterl to a single amino 

acid, its predictable and unpredictable portions 

become 25. 65 % and 7 4. 35 % . In this manner, each 

protein has a unique number, either predictable or 

unpredictable portion, to distinguish itself from 

others. 

From the application viewpoint, we can use this 

approach to compare proteins from different families, 
subtypes, and species[3o, 33 ' 38，础，口，础，时 ， and we can 

also use this approach to study the evolution of a 

protein family along the time 
course[41' 44 ，础 ， 67• 71· 76· 77J when we consider each 

protein as a basic element for comparison. 

2. 1. 4 Five attributes of amino-acid pair 

predictability 

On the other hand, if our research interests 

concentrate on individual amino-acid pair rather than 

a whole protein, we can assign the predict巳d and 

actual frequency to each individual amino-acid pair, 

then we would have the difference between 

predictable and actual frequency. By comparing 

predicted frequency with actual one, we furthermore 

classify each individual amino-acid pair as ( i) the 

randomly predictable present type of amino-acid pair 

with predictable frequency, ( ii ) the randomly 

predictable absent type of amino-acid pair, (iii) the 

randomly predictable present type of amino-acid pair 

with unpredictable frequency, (iv) the randomly 

unpredictable present type of amino-acid pa町， and

( v ) the randomly unpredictable present type of 

amino-acid pair. 

From the application viewpoint, we can use this 

approach to compare the difference in a particular 

amino-acid pair before and after mutation in order to 

determine the mutation patterns related to each 
individual amino-acid pair[zi · z3~ 31, 34~ 36, 40, 65 ，间， 70,75] .

2. 1. 5 Meanings of amino-acid pair predictability 

After developed this meth,od conceptually , we 

have computed tens of thousands of proteins to 

determine if the amino-acid pair predictability is valid 

for different proteins. The results confirm that each 

protein has its unique predictable and unpredictable 

portions, and that the difference between predicted 

and actual frequency is very sensitive to mutation. 

Meanwhile, the amino-acid pair predictability 

can have the following meanings: (i) the predictable 

133 

amino-acid pairs suggest their construction with the 

maximal probability of occurrence, which needs the 

least time and energy; (ii) the unpredictable amino­

acid pairs suggest that nature deliberately spend more 

time and energy for its construction no matter of 

what purpose is. 

Still, the amino-acid pair predictability can 

-reliably record the changes in proteins induced by 

gene mutation so it can measure the living proteins. 

The most important implication drawn from our 

studies is that protein evolution can be regarded as 

that Nature would like to minimize the difference 

between predicted and actual frequency of amino-acid 

pairs in a protein, which leads to mutations. 

However, any new mutation may create new 

difference between predicted and actual frequency of 

amino-acid pairs, which may lead Nature to minimize 

the new difference again through mutation. Such a 

process may continue without ending, which is one of 

reasons driving the evolution. 

2. 2 Method Il · Amino-acid distribution 

probability as a measure to analyze the complexity 

of amino-acid distribution 

2. 2. 1 Amino-acid distribution probability 

After developed the amino-acid pair 

predictability, we considered that we needed to 

develop a measure that could be sensitive to the 

positions of amino-acids in a protein because th巳

amino-acid pair predictability is more relevant to 

protein length, composition and neighboring amino 

acids. 

Initially, we assumed how we could guess an 

approximate position of an amino acid in a protein, 

whose answer is that an amino acid can be at any 

position of a protein. Then, we guess two 

approximate positions for two amino acids in a 

protein, naturally we could imagine dividing this 

protein into two partitions, then each part could have 

an amino acid, or a part could have two amino acids . 

Afterwards, we guess three approximate positions 

for thr巳e amino acids in a protein, and similarly we 

could imagine dividing this protein into three 

partitions, and so forth for more amino acids. 

This led us to consider a similaτsituation in 

statistical physics, where there are Maxwell 

Boltzmann, Fermi Dirac, and Bose Einstein 

assumptions[s3J . If we do not distinguish each 

partition, our situation is similar to the Maxwell­

Boltzmann assumption. So we can view the 
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distribution pattern of a typ巳 of amino acids along 

protein sequence is analogous to the ’ occupancy of 

subpopulations and partitions, thus we can calculate 

the amino acid distribution probability using 

r ！ 、， r ！ 、，

riJ × r 2 ！ × … × r，.！ … qo ！ × qi! × … × q. ！ ，、

η→［s4J , where r is the number of amino acids, n is the 

number of partitions, r. is the number of amino acids 

in the n -th partition, q. is the number of partitions 

with the same number of amino acids, and ! is the 

factorial function. 

For example, two amino acids have two p。ssible

distributions along a protein, that is, two amino 

acids distribute in each partition or in any one. 

partition if we imagine dividing this protein into two 

partitions, for which we would have the distribution 
2 ! ? probabilities 一二L一× × z-, ＝一一一 ×

’ 1 ! × l! O! × 2 ! × OJ 1 × 1 

~一一× 0. 25 = 0. 5 一二ι一 × > . × 2寸只！只！ ”

1× 2× 1 ’ 2 ! × O! l! × OJ × 1 ! 

=___L ×~一一× o. 25=0. 5. 
2 × 1 1 × 1 × 1 

2. 2. 2 Characteristics of amino-acid distribution 

probability 

In this way, we can computer the amino-acid 

distribution probability for each type of amino acids in 

a prot创n using the above equation. Here, we can 

notice several characteristics of amino acid 

distribution probability. 

First, there are two theoretical distributions for 

two amino acids in a protein as mentioned in the 

above section, and then there are three th巳οretical

distributions for three amino acids in a protein. 

Hereafter, the thing is different, because there are 

five theoretical distributions for four amino acids, 

seven theoretical distributions for five amino acids, 

11 theoretical d istri bu tions for six amino acids , 15 

theoretical distributions for seven amino acids, and so 

on. Thus, the general rule is that the increase in the 

number of distributions is not proportional to the 

increase in the number of amino acids . 

Second, the largest distribution probability 

decreases as the increase in the number of amino 

acids, which are more than two. For instance, the 

largest distribution probability is 0. 67 for 3 amino 

acids, 0. 56 for 4 amino acids, 0. 38 for 5 amino 

acids, 0. 35 for 6 amino acids, and so on. 

Thi时， the probability of uniform distribution is 

very small, that is, the chance is very small for each 

partition to have an amino acid. 
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Finally, sometimes different distributions can 

have the same distribution probability so we arrange 

all the distribution probabilities in descending order, 

which we call as the distribution rank for distinction. 

The bigger the distribution probability is, the smaller 

the distribution rank is. The distribution rank is the 

same for different distributions with the same 

distribution probabil』ty.

2. 2. 3 Actual and predicted amino-acid distribution 

probability 

Theoretically th巳re are many distributions for 

each type of amino acids in a protein, but a certain 

type of amino acids in a protein can adopt only one 

distribution in real-life, whose distribution 

probability is the actual amino-acid distribution 

probability. 

According to the random principle, any event 

with the greatest probability will occur most likely. 

Ther巳fore, the biggest amino-acid distribution 

probability can be considered as the pr巳dicted

probability to serve as a ref巳rence, and w巳 can

compare the actual amino-acid distribution probability 

with the predicted one to analyze the complexity of 

amino-acid distribution in proteins. 

2. 2. 4 Predictable/ Unpredictable portion and 

difference between predicted and actual probability 

As we do in Method I, we can also classify a 

protein as predictable and unpredictable portions in 

terms of amino-acid distribution probability. Still, 

we can assign the predicted and actual amino-acid 

distribution probabilities to each amino acid in a 

protein, which is somewhat different from what we 

do using the amino-acid pair predictability where we 

assign the predicted and actually frequencies to 

amino acid pair. We can estimate the complexity of 

amino-acid distribution by the ratio of predicted 
versus actual probabilityC10· 15' 16' 19' 22' 37 , ”’ 45, 46] • 

2. 2. 5 Meanings of amino-acid distribution 

probability 

The amino-acid distribution probability is a 

measure to estimate the spatial randomness in the 

protein primary structure. It can answer why a 

certain type of amino acids do not evenly distribute 

along a prot巳in sequence but rather concentrate on 

different regions. From the random viewpoi时， the

probability is quite small for the uniform distribution, 

indicating that Nature requires the non-uniform 

distribution of amino acids along a protein sequence 

during the process of protein synthesis to form the 
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active site, which is the base for high-level structure 

and protein function. 

The small distribution probability or the big 

distribution rank suggests that a protein composition 

is less random and more complicated. Such a protein 

is less stable and easy to mutate. 

2. 3 Method m : amino-acid mutating probability 

as a measure to analyze the future amino-acid 

composition and would-be mutated amino acid 

2. 3. 1 Translation probability between RNA 

Codons and Amino Acids 

After developed the above two methods, which 

are not related to the time direction, we hope to 

develop a method, which is related to the time 

direction. Our attention at first paid to the 

relationship between RNA codons and translated 

amino acids. 

There are unambiguous relationships between 

RNA codons and translated amino acids, and the 

ame amino acid can be translated by different RNA 

codons because there are 64 RNA codons but 20 

amino acids plus STOP signal, say, RN A codons are 

more than amino acids . For example, methionine is 

related with a single RNA codon ( AUG ) , 

phenylalanine with two codons (UUU and UUC), 

isoleucine with three codons ( AUU, AUC and 

AUA), praline with four codons (CCU, CCC, CCA 

and CCG) , and leucine with six codons C UU A, 

UUG, CUU, CUC, CUA and CUG). 

As a RNA codon is composed of any three out of 

four nucleotides (A, C, G and U) , how does a point 

mutation at RNA codon affect t he five amino acids 

mentioned above? We can infer that the order is 

methionine, phenylalanine, isoleucine, proline and 

leucine according to their affected extent. As 

methionine is only related with a single RNA codon, 

it will certainly be mutated into other amino acids; 

however, leucine is related with six codons so a point 

mutation at RNA codon will have a smaller impact on 

it . From the difference between the number of RNA 

codons and the number of amino acids, we can 

deduce the translation probability between RNA 

codons and translated amino acids, which is a time­

orientated measure because the mutation is directed 

to the future, that is, this probability indicates which 

amino acid appears easily after a point 
<43 . 49 , 78] 口1utation

2. 3. 2 Amino-acid mutating probability 

The translation probability between RNA 
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codons and translated amino acids are related to two 

levels : RNA and protein . If we focus on studying 

variations in the protein level, we are more interested 

in the probability that an amino acid changes to other 

ones. Therefore, we sum up the mutating 

probabilities, by which we know the chance for an 

amino acid to mutate to another amino acid . 

2. 3. 3 Amino明acid fut ure composition 

The amino-acid mutating probability reflects the 

time-orientated randomness, so we can calculate the 

future composition of amino acids in a mutant protein 

from the current wild protein . The difference 

between future and current composition of amino 

acids not only drives protein mutations, but also 

implies which type of amino acid has a greater chance 

appearing after mutation and which type of amino 

acid has a smaller chance. 

More importantly, we know when a mutation 

can form the STOP signal so we can explain why 

some mutations will induce the truncated protein and 

its proportion. This is a remarkable feature that our 

approach is different from other methods. 

2. 3. 4 Meanings of amino-acid mutating probability 

The future amino-acid composition is based on 

large-scale and long-term statistics, which is 

governed by the translation probability between RNA 

codons and translated amino acids . To predict the 

would- be mutated amino acids, we cannot accurately 

predict what type of amino acids would form in the 

mutant, but we can know the probability of its 

formation. 

In fact, the ratio of future versus current amino­

acid composition indicates the mutation trend, that 

is, the bigger the ratio is, the larger the mutation 

trend is for given type of amino acids. From this 

ratio, we can know which type of amino acids is 

more likely to mutate, which is very important for 

knowing the mutation trend in each type of amino 

acids and predicting mutations, thus we can use this 

ratio as an indicator engineering mutation. 

2. 4 Comparison of three methods 

All our three methods can quantify each amino 

acid in a protein sequence and the whole protein with 

a numerical datum. During 10 years, we have used 

them to study tens of thousands of various proteins, 

to observe their behaviors from the angle of time, 

space, and time and space. The results reveal that 

dynamic is tlie common feature for all of these 

measures. They are sensitive to the changes in 
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protein length, in amino-acid composition and 

position, and in neighboring amino acids . Thus, 

these methods are suitable for analyzing mutation. 

Method I deals with the various subsets of 

amino-acid pairs so it is sensitive to the changes in 

adjacent amino acids. Method Il deals with the 

linear space structure of amino acids so it is sensitive 

to the changes in position. Method Ill deals with the 

time point of amino acids so it is sensitive to the 

would- be mutated amino acids. 

Thus, these three methods reflect the protein 

randomness from different viewpoints, and provide 

new ways for further understanding of the biological 

evolution through mutations. The detail comparisons 

of the methods have been published in our previous 
1, [20 . 48 , 79) 

Or KS 

3 Applications of computational mutation 

After developing the methods of computational 

mutation, we have been focusing on exploring their 

applications, in order to use them to explain various 

phenomena in biology and medicine, and to solve 

practical problems. 

3. 1 Analyzing mutation patterns in proteins 

We have used the approaches of computational 

mutation to analyze tens of thousands of proteins, in 

order to reveal their mutation patterns. The results 

show that the mutation is highly likely to occur at the 

unpredictable amino-acid pairs. The majority of 

mutation- targeted pairs are characterized by one or 

both pairs whose actual frequency is larger than 

predicted one, meanwhile many mutations lead to 

one or both mutation-formed amino-acid pairs with 

their actual frequency smaller than predicted one. 

Thus, the mutation trend is to diminish the 

difference between predicted and actual frequency of 
amino-acid pairs[4 1 ， 材， 睛 ， 67 , 71. 76 . 77) _ 

3. 2 Diagnosing genetic disorders quantitatively 

We have analyzed various genetic diseases, 

firstly we use the amino-acid distribution probability 

to quantify the normal protein and its mutants, then 

we use the cross-impact analysis to determine the 

relationship between mutant proteins and their 

clinical outcome, and finally we use the Bayesian 

equation to calculate the probability that a certain 

disease occurs under a mutation. 

In this way, we build a descriptively 

probabilistic method to determine the probability of 

occurrence of a single gene disorder when a new 

mutation is present. Our approach paves the way for 
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analyzing quantitatively the relationship between 

genotype and phenotype, which will help the early 
diagnosis[61~64 , 69 , 72, 73) . 

3. 3 Estimating protein structure and function 

We have used the amino acid distribution rank 

as a measure to quantify the normal and mutant 

hemoglobin chains to analyze their stability and 

oxygen affinity. The results show that if a mutation 

increases the amino-acid distribution rank, the 

mutant has a larger probability of increasing oxygen 

affinity, but also has a larger probability of 

instability. 

These studies support our viewpoint: the larger 

the amino-acid distribution rank is, the more 

complex the protein structure is, th巳 more powerful 

the protein function is, but the less stable the protein 

is. Our approach has benefit to quantitatively study 

the relationship between protein structure and its 
function[ss . 79J . 

3. 4 Designing potential targets for antiviral drug 

From the probability viewpoint, we can choose 

some amino-acid pairs as potential targets of antiviral 

drug. These pairs will have a large chance of colliding 

with drug, and of linking closely to protein function, 

but will be less sensitive to mutations. Thi 

theoretical framework provides new ideas for 

designing antiviral drugs［泣 ， 79) • 

3. 5 Predicting mutations in influenza A viruses 

In recent years, we have focused on the 

mutations of influenza A viruses because of the threat 

of flu pandemic. We have been explored how to 

systematically predict the mutations and developed 

the prediction strategies, for example, using the 

cross- impact analysis and Bayesian equation to 

calculate the probability of spontaneous mutations, 

using the logistic regression and neural network to 

predict the mutation positions, using the amino-acid 

mutating probability to predict the would- be mutated 

amino acids , using the Fast Fourier Transform to 

determine the periodicity, searching for natural 

factors that affect the virus mutations to time the 

outbreak of influenza, and so 
6～础， 50～57 . 59. 60 , 67 , ”’ 71. 74, 76 , 77) on 

4 Conclusions 

Over the last 10 years, we have been fortunate 

to develop a discipline, which is called the 

computational mutation. This computational 

mutation has two important advantages over the 

other approaches: ( i) the computational mutation 
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can m easure the living s ign of DNA/ RNA / protein, 

which overcomes the limita tion of b ioinforma t ics and 

computa tiona l biology, and ( ii ) the computational 

muta t ion suggest s tha t t h e evolution of DNA/ R N A / 

protein is partia lly a ttributed to the fac t tha t N ature 

h as the inten t ion to minimize the differenc巳 between

predicted a nd actual values, w hich lead s to mutation s 

tha t creat e n ew differ ence between predic ted a nd 

actual va lues , t hus the evolution is a non-stop a nd 

continuous process. 
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更加安全卫生。菌草无粪栽培蘑菇是可行的，开辟了

蘑菇栽培新的原料途径。
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