引用本文
  • 杨本良.压缩候选的贝叶斯信念网络构造算法[J].广西科学院学报,2005,(4):207-208.    [点击复制]
  • Yang Benliang.Algorithm of Bayesian Belief Network Structure of Compressed Candidature[J].Journal of Guangxi Academy of Sciences,2005,(4):207-208.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 309次   下载 301 本文二维码信息
码上扫一扫!
压缩候选的贝叶斯信念网络构造算法
杨本良
0
(广西梧州市商务局, 广西梧州 543000)
摘要:
针对传统算法分类速度较慢的不足,改进传统算法中候选变量的搜索方式,提出用依赖度量函数测量变量之间的依赖程度,得出压缩候选的贝叶斯信念网络构造算法.该算法在不影响原有算法可靠性的前提下,提高了学习速度.
关键词:  贝叶斯信念网络  压缩候选  算法  数据挖掘
DOI:
投稿时间:2005-05-19修订日期:2005-08-05
基金项目:
Algorithm of Bayesian Belief Network Structure of Compressed Candidature
Yang Benliang
(Wuzhou Business Bureau of Guangxi, Wuzhou, Guangxi, 543000, China)
Abstract:
A learning algorithm of compressed candidates based on Bayesia belief network is developed to solve slow running problem of traditional Bayesian belief network constructing algorithm.The improved method for searching candidates with a modified dependence measure is used in the presented algorithm which can speed up the study process without sacrificing the reliability of the traditional method.
Key words:  Bayesian belief network  compressed candidature  algorithm  data mining

用微信扫一扫

用微信扫一扫