引用本文
  • 黄娜,石志杰,黄健民.一类脉冲免疫SIR传染病模型的无病τ周期解的存在性与稳定性[J].广西科学院学报,2011,27(4):294-298,302.    [点击复制]
  • HUANG Na,SHI Zhi-jie,HUANG Jian-min.Existence and Stability of Infection-free Periodic Solutions to Impulsively Vaccinating SIR Epidemic Model[J].Journal of Guangxi Academy of Sciences,2011,27(4):294-298,302.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 482次   下载 473 本文二维码信息
码上扫一扫!
一类脉冲免疫SIR传染病模型的无病τ周期解的存在性与稳定性
黄娜, 石志杰, 黄健民
0
(广西师范大学, 广西桂林 541004)
摘要:
在脉冲免疫接种条件下,利用频闪映射的离散动力系统、Floquet乘子理论和脉冲微分方程比较定理,讨论一类具有阶段结构和Logistic死亡率的脉冲免疫接种SIR传染病模型,得到系统的无病τ周期解以及无病τ周期解的存在性和全局渐近稳定性的充分条件.
关键词:  脉冲方程  免疫接种  SIR模型  全局渐近稳定性  τ周期解
DOI:
投稿时间:2011-05-25修订日期:2011-06-17
基金项目:国家自然基金项目(10961005)资助
Existence and Stability of Infection-free Periodic Solutions to Impulsively Vaccinating SIR Epidemic Model
HUANG Na, SHI Zhi-jie, HUANG Jian-min
(Guangxi Normal University, Guilin, Guangxi, 541004, China)
Abstract:
An SIR epidemic model with generalized logistic death rate and stage structured was established.Using the discrete dynamical system determined by the stroboscopic map,an infection free periodic solution of the model under impulsive vaccination was obtained.Based on Floquet theory and the comparison theorem of impulsive differential equation,the analysis of global asymptotic stability of the infection free periodic solution was illustrated.
Key words:  impulsive differential equations  impulsive vaccination  SIR model  global asymptotic stability  τ periodicsolution

用微信扫一扫

用微信扫一扫