引用本文
  • 曾祥理,袁钢,钱俊彦.优化网络布置费用的遗传算法[J].广西科学院学报,2014,30(1):44-46.    [点击复制]
  • ZENG Xiang-li,YUAN Gang,QIAN Jun-yan.The Genetic Algorithm of Optimizing of Network Arrangement Cost[J].Journal of Guangxi Academy of Sciences,2014,30(1):44-46.   [点击复制]
【打印本页】 【在线阅读全文】【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 373次   下载 501 本文二维码信息
码上扫一扫!
优化网络布置费用的遗传算法
曾祥理, 袁钢, 钱俊彦
0
(桂林电子科技大学计算机科学与工程学院, 广西桂林 541004)
摘要:
[目的]针对网络布置费用的优化问题,利用基本遗传算法的良好搜索性能,设计出优化网络布置费用问题的遗传算法。[方法]通过分析网络布置费用的优化问题,抽象出网络模型,并将该问题转化为求解无向图中最小生成树的问题。[结果]基于遗传算法基本原理和抽象出的网络模型,设计出一种优化网络布置费用的遗传算法。[结论]应用遗传算法解决网络结构优化问题,可以让用户在短时间里获得一个比较满意的结果。
关键词:  遗传算法  网络优化  最小生成树  单亲换位算子
DOI:
投稿时间:2013-12-20修订日期:2014-01-10
基金项目:
The Genetic Algorithm of Optimizing of Network Arrangement Cost
ZENG Xiang-li, YUAN Gang, QIAN Jun-yan
(School of Computer Science and Engineering of Guilin University of Electronic Technology, Guilin, Guangxi, 541004, China)
Abstract:
[Objective] Based on the search performance of genetic algorithm a genetic operators is designed, which can optimize the cost of network arrangement.[Method] The network model is abstracted through analyzing the network optimization problems. Then these problems are turned into solving minimum spanning tree problem of undirected graph.[Result] We designed a suitable genetic algorithm to optimize the network arrangement cost, which is based on the basic theory of genetic algorithms and the abstracted network model.[Conclusion] Genetic algorithm is applied to solve network optimization problems so that users obtain the more satisfactory results within an acceptable time.
Key words:  genetic algorithm  network optimization  crossover  mutation

用微信扫一扫

用微信扫一扫